やっていくVulkan入門

3-6. イメージとイメージビュー

ここまでの流れをおさらいします。3-1. イメージの作成3-2. メモリの確保の節で描画を行う場所となる「イメージ」を作成しました。そして3-3. レンダーパス3-4. パイプライン3-5. シェーダで描画処理の内容を定義しました。

ということはあとはイメージを描画処理に投げるだけ?と思ってしまいますが、残念ながらもうちょっとだけ手間がかかります。

実は「イメージ」はこのままだとパイプラインの処理の中からは扱うことができません。パイプラインで描画の対象として扱うには、「イメージ」から「イメージビュー」という繋ぎのためのオブジェクトを作ってやる必要があります。そういう仕様なので仕方ありません。

レンダーパスの中のそれぞれのアタッチメントには「イメージ」ではなく、この節で作成する「イメージビュー」を結び付けることになります。この詳細は次の3-7. フレームバッファの節で解説しましょう。

イメージビューは以下のようなコードで作成します。

vk::ImageViewCreateInfo imgViewCreateInfo;
imgViewCreateInfo.image = image.get();
imgViewCreateInfo.viewType = vk::ImageViewType::e2D;
imgViewCreateInfo.format = vk::Format::eR8G8B8A8Unorm;
imgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eColor;
imgViewCreateInfo.subresourceRange.baseMipLevel = 0;
imgViewCreateInfo.subresourceRange.levelCount = 1;
imgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
imgViewCreateInfo.subresourceRange.layerCount = 1;

vk::UniqueImageView imgView = device->createImageViewUnique(imgViewCreateInfo);

これも要点となるところだけ解説しましょう。

imageにはイメージビューが指すイメージを指定します。

viewTypeはイメージビューの種別で、「イメージ」を作成したときのimageTypeのように次元を指定します。ここでは元となるイメージに合わせて2D(2次元)を指定しています。実はイメージビューではさらにもう少し選べるオプションがあるのですが、ここでは詳しい話は避けます。

formatにはイメージビューのフォーマットを指定します。イメージの作成時に指定したフォーマットに合わせましょう。

componentssubresourceRangeについてはまたの機会に説明します。

実は、Vulkanの仕様では一つのイメージオブジェクトが複数のレイヤーを持つことができます。イメージビューによって、その中のどのレイヤーをアタッチメント(=描画対象)として使うのかといった部分を指定したりもできるようです。そうした部分をviewType, components, subresourceRangeなどで指定します。

「イメージ」と「イメージビュー」の違いに関する個人的な理解ですが、イメージが本当にただの画像を表すオブジェクトなのに対し、イメージビューは「どのイメージを扱うか」と「そのイメージを描画処理の上でどのように扱うか」をひとまとめにしたオブジェクトだという風に理解しています。


この節ではイメージビューの作成をやりました。次節ではフレームバッファを作成します。

この節のコード
#include <vulkan/vulkan.hpp>
#include <fstream>
#include <filesystem>
#include <iostream>
#include <vector>

const uint32_t screenWidth = 640;
const uint32_t screenHeight = 480;

int main() {
    vk::InstanceCreateInfo createInfo;

    vk::UniqueInstance instance;
    instance = vk::createInstanceUnique(createInfo);

    std::vector<vk::PhysicalDevice> physicalDevices = instance->enumeratePhysicalDevices();

    vk::PhysicalDevice physicalDevice;
    bool existsSuitablePhysicalDevice = false;
    uint32_t graphicsQueueFamilyIndex;

    for (size_t i = 0; i < physicalDevices.size(); i++) {
        std::vector<vk::QueueFamilyProperties> queueProps = physicalDevices[i].getQueueFamilyProperties();
        bool existsGraphicsQueue = false;

        for (size_t j = 0; j < queueProps.size(); j++) {
            if (queueProps[j].queueFlags & vk::QueueFlagBits::eGraphics) {
                existsGraphicsQueue = true;
                graphicsQueueFamilyIndex = j;
                break;
            }
        }

        if (existsGraphicsQueue) {
            physicalDevice = physicalDevices[i];
            existsSuitablePhysicalDevice = true;
            break;
        }
    }

    if (!existsSuitablePhysicalDevice) {
        std::cerr << "使用可能な物理デバイスがありません。" << std::endl;
        return -1;
    }

    vk::DeviceCreateInfo devCreateInfo;

    vk::DeviceQueueCreateInfo queueCreateInfo[1];
    queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamilyIndex;
    queueCreateInfo[0].queueCount = 1;

    float queuePriorities[1] = { 1.0 };

    queueCreateInfo[0].pQueuePriorities = queuePriorities;

    devCreateInfo.pQueueCreateInfos = queueCreateInfo;
    devCreateInfo.queueCreateInfoCount = 1;
    vk::UniqueDevice device = physicalDevice.createDeviceUnique(devCreateInfo);

    vk::Queue graphicsQueue = device->getQueue(graphicsQueueFamilyIndex, 0);

    vk::CommandPoolCreateInfo cmdPoolCreateInfo;
    cmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
    vk::UniqueCommandPool cmdPool = device->createCommandPoolUnique(cmdPoolCreateInfo);

    vk::CommandBufferAllocateInfo cmdBufAllocInfo;
    cmdBufAllocInfo.commandPool = cmdPool.get();
    cmdBufAllocInfo.commandBufferCount = 1;
    cmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
    std::vector<vk::UniqueCommandBuffer> cmdBufs =
        device->allocateCommandBuffersUnique(cmdBufAllocInfo);

    vk::ImageCreateInfo imgCreateInfo;
    imgCreateInfo.imageType = vk::ImageType::e2D;
    imgCreateInfo.extent = vk::Extent3D(screenWidth, screenHeight, 1);
    imgCreateInfo.mipLevels = 1;
    imgCreateInfo.arrayLayers = 1;
    imgCreateInfo.format = vk::Format::eR8G8B8A8Unorm;
    imgCreateInfo.tiling = vk::ImageTiling::eLinear;
    imgCreateInfo.initialLayout = vk::ImageLayout::eUndefined;
    imgCreateInfo.usage = vk::ImageUsageFlagBits::eColorAttachment;
    imgCreateInfo.sharingMode = vk::SharingMode::eExclusive;
    imgCreateInfo.samples = vk::SampleCountFlagBits::e1;

    vk::UniqueImage image = device->createImageUnique(imgCreateInfo);

    vk::PhysicalDeviceMemoryProperties memProps = physicalDevice.getMemoryProperties();

    vk::MemoryRequirements imgMemReq = device->getImageMemoryRequirements(image.get());

    vk::MemoryAllocateInfo imgMemAllocInfo;
    imgMemAllocInfo.allocationSize = imgMemReq.size;

    bool suitableMemoryTypeFound = false;
    for (size_t i = 0; i < memProps.memoryTypeCount; i++) {
        if (imgMemReq.memoryTypeBits & (1 << i)) {
            imgMemAllocInfo.memoryTypeIndex = i;
            suitableMemoryTypeFound = true;
            break;
        }
    }

    if (!suitableMemoryTypeFound) {
        std::cerr << "使用可能なメモリタイプがありません。" << std::endl;
        return -1;
    }

    vk::UniqueDeviceMemory imgMem = device->allocateMemoryUnique(imgMemAllocInfo);

    device->bindImageMemory(image.get(), imgMem.get(), 0);

    vk::AttachmentDescription attachments[1];
    attachments[0].format = vk::Format::eR8G8B8A8Unorm;
    attachments[0].samples = vk::SampleCountFlagBits::e1;
    attachments[0].loadOp = vk::AttachmentLoadOp::eDontCare;
    attachments[0].storeOp = vk::AttachmentStoreOp::eStore;
    attachments[0].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
    attachments[0].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
    attachments[0].initialLayout = vk::ImageLayout::eUndefined;
    attachments[0].finalLayout = vk::ImageLayout::eGeneral;

    vk::AttachmentReference subpass0_attachmentRefs[1];
    subpass0_attachmentRefs[0].attachment = 0;
    subpass0_attachmentRefs[0].layout = vk::ImageLayout::eColorAttachmentOptimal;

    vk::SubpassDescription subpasses[1];
    subpasses[0].pipelineBindPoint = vk::PipelineBindPoint::eGraphics;
    subpasses[0].colorAttachmentCount = 1;
    subpasses[0].pColorAttachments = subpass0_attachmentRefs;

    vk::RenderPassCreateInfo renderpassCreateInfo;
    renderpassCreateInfo.attachmentCount = 1;
    renderpassCreateInfo.pAttachments = attachments;
    renderpassCreateInfo.subpassCount = 1;
    renderpassCreateInfo.pSubpasses = subpasses;
    renderpassCreateInfo.dependencyCount = 0;
    renderpassCreateInfo.pDependencies = nullptr;

    vk::UniqueRenderPass renderpass = device->createRenderPassUnique(renderpassCreateInfo);

    vk::Viewport viewports[1];
    viewports[0].x = 0.0;
    viewports[0].y = 0.0;
    viewports[0].minDepth = 0.0;
    viewports[0].maxDepth = 1.0;
    viewports[0].width = screenWidth;
    viewports[0].height = screenHeight;

    vk::Rect2D scissors[1];
    scissors[0].offset = { 0, 0 };
    scissors[0].extent = { screenWidth, screenHeight };

    vk::PipelineViewportStateCreateInfo viewportState;
    viewportState.viewportCount = 1;
    viewportState.pViewports = viewports;
    viewportState.scissorCount = 1;
    viewportState.pScissors = scissors;

    vk::PipelineVertexInputStateCreateInfo vertexInputInfo;
    vertexInputInfo.vertexAttributeDescriptionCount = 0;
    vertexInputInfo.pVertexAttributeDescriptions = nullptr;
    vertexInputInfo.vertexBindingDescriptionCount = 0;
    vertexInputInfo.pVertexBindingDescriptions = nullptr;

    vk::PipelineInputAssemblyStateCreateInfo inputAssembly;
    inputAssembly.topology = vk::PrimitiveTopology::eTriangleList;
    inputAssembly.primitiveRestartEnable = false;

    vk::PipelineRasterizationStateCreateInfo rasterizer;
    rasterizer.depthClampEnable = false;
    rasterizer.rasterizerDiscardEnable = false;
    rasterizer.polygonMode = vk::PolygonMode::eFill;
    rasterizer.lineWidth = 1.0f;
    rasterizer.cullMode = vk::CullModeFlagBits::eBack;
    rasterizer.frontFace = vk::FrontFace::eClockwise;
    rasterizer.depthBiasEnable = false;

    vk::PipelineMultisampleStateCreateInfo multisample;
    multisample.sampleShadingEnable = false;
    multisample.rasterizationSamples = vk::SampleCountFlagBits::e1;

    vk::PipelineColorBlendAttachmentState blendattachment[1];
    blendattachment[0].colorWriteMask =
        vk::ColorComponentFlagBits::eA |
        vk::ColorComponentFlagBits::eR |
        vk::ColorComponentFlagBits::eG |
        vk::ColorComponentFlagBits::eB;
    blendattachment[0].blendEnable = false;

    vk::PipelineColorBlendStateCreateInfo blend;
    blend.logicOpEnable = false;
    blend.attachmentCount = 1;
    blend.pAttachments = blendattachment;

    vk::PipelineLayoutCreateInfo layoutCreateInfo;
    layoutCreateInfo.setLayoutCount = 0;
    layoutCreateInfo.pSetLayouts = nullptr;

    vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(layoutCreateInfo);

    size_t vertSpvFileSz = std::filesystem::file_size("shader.vert.spv");

    std::ifstream vertSpvFile("shader.vert.spv", std::ios_base::binary);

    std::vector<char> vertSpvFileData(vertSpvFileSz);
    vertSpvFile.read(vertSpvFileData.data(), vertSpvFileSz);

    vk::ShaderModuleCreateInfo vertShaderCreateInfo;
    vertShaderCreateInfo.codeSize = vertSpvFileSz;
    vertShaderCreateInfo.pCode = reinterpret_cast<const uint32_t*>(vertSpvFileData.data());

    vk::UniqueShaderModule vertShader = device->createShaderModuleUnique(vertShaderCreateInfo);

    size_t fragSpvFileSz = std::filesystem::file_size("shader.frag.spv");

    std::ifstream fragSpvFile("shader.frag.spv", std::ios_base::binary);

    std::vector<char> fragSpvFileData(fragSpvFileSz);
    fragSpvFile.read(fragSpvFileData.data(), fragSpvFileSz);

    vk::ShaderModuleCreateInfo fragShaderCreateInfo;
    fragShaderCreateInfo.codeSize = fragSpvFileSz;
    fragShaderCreateInfo.pCode = reinterpret_cast<const uint32_t*>(fragSpvFileData.data());

    vk::UniqueShaderModule fragShader = device->createShaderModuleUnique(fragShaderCreateInfo);

    vk::PipelineShaderStageCreateInfo shaderStage[2];
    shaderStage[0].stage = vk::ShaderStageFlagBits::eVertex;
    shaderStage[0].module = vertShader.get();
    shaderStage[0].pName = "main";
    shaderStage[1].stage = vk::ShaderStageFlagBits::eFragment;
    shaderStage[1].module = fragShader.get();
    shaderStage[1].pName = "main";

    vk::GraphicsPipelineCreateInfo pipelineCreateInfo;
    pipelineCreateInfo.pViewportState = &viewportState;
    pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
    pipelineCreateInfo.pInputAssemblyState = &inputAssembly;
    pipelineCreateInfo.pRasterizationState = &rasterizer;
    pipelineCreateInfo.pMultisampleState = &multisample;
    pipelineCreateInfo.pColorBlendState = &blend;
    pipelineCreateInfo.layout = pipelineLayout.get();
    pipelineCreateInfo.renderPass = renderpass.get();
    pipelineCreateInfo.subpass = 0;
    pipelineCreateInfo.stageCount = 2;
    pipelineCreateInfo.pStages = shaderStage;

    vk::UniquePipeline pipeline = device->createGraphicsPipelineUnique(nullptr, pipelineCreateInfo).value;

    vk::ImageViewCreateInfo imgViewCreateInfo;
    imgViewCreateInfo.image = image.get();
    imgViewCreateInfo.viewType = vk::ImageViewType::e2D;
    imgViewCreateInfo.format = vk::Format::eR8G8B8A8Unorm;
    imgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
    imgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
    imgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
    imgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
    imgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eColor;
    imgViewCreateInfo.subresourceRange.baseMipLevel = 0;
    imgViewCreateInfo.subresourceRange.levelCount = 1;
    imgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
    imgViewCreateInfo.subresourceRange.layerCount = 1;

    vk::UniqueImageView imgView = device->createImageViewUnique(imgViewCreateInfo);

    vk::CommandBufferBeginInfo cmdBeginInfo;
    cmdBufs[0]->begin(cmdBeginInfo);

    // コマンドを記録

    cmdBufs[0]->end();

    vk::CommandBuffer submitCmdBuf[1] = { cmdBufs[0].get() };
    vk::SubmitInfo submitInfo;
    submitInfo.commandBufferCount = 1;
    submitInfo.pCommandBuffers = submitCmdBuf;

    graphicsQueue.submit({ submitInfo }, nullptr);

    return 0;
}

#version 450
#extension GL_ARB_separate_shader_objects : enable

void main() {
    if(gl_VertexIndex == 0) {
        gl_Position = vec4(0.0, -0.5, 0.0, 1.0);
    } else if(gl_VertexIndex == 1) {
        gl_Position = vec4(0.5, 0.5, 0.0, 1.0);
    } else if(gl_VertexIndex == 2) {
        gl_Position = vec4(-0.5, 0.5, 0.0, 1.0);
    }
}
#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(location = 0) out vec4 outColor;

void main() {
    outColor = vec4(1.0, 0.0, 0.0, 1.0);
}
cmake_minimum_required(VERSION 3.22)

project(vulkan-test)

set(CMAKE_CXX_STANDARD 17)

add_executable(app main.cpp)

find_package(Vulkan REQUIRED)
target_include_directories(app PRIVATE ${Vulkan_INCLUDE_DIRS})
target_link_libraries(app PRIVATE ${Vulkan_LIBRARIES})