3-3. レンダーパスにおいてレンダーパスについて解説しました。レンダーパスは処理(サブパス)とデータ(アタッチメント)のつながりと関係性を記述しますが、具体的な処理内容やどのデータを扱うかについては関与しません。具体的な処理内容はコマンドバッファに積むコマンドやパイプラインによって決まりますが、具体的なデータの方を決めるためのものがフレームバッファです。
フレームバッファを介して「0番のアタッチメントはこのイメージビュー、1番のアタッチメントは…」という結び付けを行うことで初めてレンダーパスが使えます。
フレームバッファはvk::Device
のcreateFramebuffer
メソッドで作成できます。
vk::ImageView frameBufAttachments[1];
frameBufAttachments[0] = imgView.get();
vk::FramebufferCreateInfo frameBufCreateInfo;
frameBufCreateInfo.width = screenWidth;
frameBufCreateInfo.height = screenHeight;
frameBufCreateInfo.layers = 1;
frameBufCreateInfo.renderPass = renderpass.get();
frameBufCreateInfo.attachmentCount = 1;
frameBufCreateInfo.pAttachments = frameBufAttachments;
vk::UniqueFramebuffer frameBuf = device->createFramebufferUnique(frameBufCreateInfo);
前節で作成したイメージビューの情報を初期化用構造体に入れていますね。これで0番のアタッチメントがどのイメージビューに対応しているのかを示すことができます。
ここで注意ですが、初期化用構造体にレンダーパスの情報を入れてはいるものの、これでレンダーパスとイメージビューが結びついた訳ではありません。 ここで入れているレンダーパスの情報はあくまで「このフレームバッファはどのレンダーパスと結びつけることができるのか」を表しているに過ぎず、フレームバッファを作成した時点で結びついた訳ではありません。フレームバッファとレンダーパスを本当に結びつける処理は次節で行います。
余談です。パイプラインの作成処理でもレンダーパスの情報を渡していますが、ここにも同じ事情があります。フレームバッファとパイプラインは特定のレンダーパスに依存して作られるものであり、互換性のない他のレンダーパスのために働こうと思ってもそのようなことはできないのです。 結びつけを行っている訳ではないのにレンダーパスの情報を渡さなければならないのはそのためです。
この節ではフレームバッファの作成をやりました。次節ではいよいよ今まで作ったものを全て繋げて動かします。この節のコード
#include <vulkan/vulkan.hpp>
#include <fstream>
#include <filesystem>
#include <iostream>
#include <vector>
const uint32_t screenWidth = 640;
const uint32_t screenHeight = 480;
int main() {
vk::InstanceCreateInfo createInfo;
vk::UniqueInstance instance;
instance = vk::createInstanceUnique(createInfo);
std::vector<vk::PhysicalDevice> physicalDevices = instance->enumeratePhysicalDevices();
vk::PhysicalDevice physicalDevice;
bool existsSuitablePhysicalDevice = false;
uint32_t graphicsQueueFamilyIndex;
for (size_t i = 0; i < physicalDevices.size(); i++) {
std::vector<vk::QueueFamilyProperties> queueProps = physicalDevices[i].getQueueFamilyProperties();
bool existsGraphicsQueue = false;
for (size_t j = 0; j < queueProps.size(); j++) {
if (queueProps[j].queueFlags & vk::QueueFlagBits::eGraphics) {
existsGraphicsQueue = true;
graphicsQueueFamilyIndex = j;
break;
}
}
if (existsGraphicsQueue) {
physicalDevice = physicalDevices[i];
existsSuitablePhysicalDevice = true;
break;
}
}
if (!existsSuitablePhysicalDevice) {
std::cerr << "使用可能な物理デバイスがありません。" << std::endl;
return -1;
}
vk::DeviceCreateInfo devCreateInfo;
vk::DeviceQueueCreateInfo queueCreateInfo[1];
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamilyIndex;
queueCreateInfo[0].queueCount = 1;
float queuePriorities[1] = { 1.0 };
queueCreateInfo[0].pQueuePriorities = queuePriorities;
devCreateInfo.pQueueCreateInfos = queueCreateInfo;
devCreateInfo.queueCreateInfoCount = 1;
vk::UniqueDevice device = physicalDevice.createDeviceUnique(devCreateInfo);
vk::Queue graphicsQueue = device->getQueue(graphicsQueueFamilyIndex, 0);
vk::CommandPoolCreateInfo cmdPoolCreateInfo;
cmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
vk::UniqueCommandPool cmdPool = device->createCommandPoolUnique(cmdPoolCreateInfo);
vk::CommandBufferAllocateInfo cmdBufAllocInfo;
cmdBufAllocInfo.commandPool = cmdPool.get();
cmdBufAllocInfo.commandBufferCount = 1;
cmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> cmdBufs =
device->allocateCommandBuffersUnique(cmdBufAllocInfo);
vk::ImageCreateInfo imgCreateInfo;
imgCreateInfo.imageType = vk::ImageType::e2D;
imgCreateInfo.extent = vk::Extent3D(screenWidth, screenHeight, 1);
imgCreateInfo.mipLevels = 1;
imgCreateInfo.arrayLayers = 1;
imgCreateInfo.format = vk::Format::eR8G8B8A8Unorm;
imgCreateInfo.tiling = vk::ImageTiling::eLinear;
imgCreateInfo.initialLayout = vk::ImageLayout::eUndefined;
imgCreateInfo.usage = vk::ImageUsageFlagBits::eColorAttachment;
imgCreateInfo.sharingMode = vk::SharingMode::eExclusive;
imgCreateInfo.samples = vk::SampleCountFlagBits::e1;
vk::UniqueImage image = device->createImageUnique(imgCreateInfo);
vk::PhysicalDeviceMemoryProperties memProps = physicalDevice.getMemoryProperties();
vk::MemoryRequirements imgMemReq = device->getImageMemoryRequirements(image.get());
vk::MemoryAllocateInfo imgMemAllocInfo;
imgMemAllocInfo.allocationSize = imgMemReq.size;
bool suitableMemoryTypeFound = false;
for (size_t i = 0; i < memProps.memoryTypeCount; i++) {
if (imgMemReq.memoryTypeBits & (1 << i)) {
imgMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "使用可能なメモリタイプがありません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory imgMem = device->allocateMemoryUnique(imgMemAllocInfo);
device->bindImageMemory(image.get(), imgMem.get(), 0);
vk::AttachmentDescription attachments[1];
attachments[0].format = vk::Format::eR8G8B8A8Unorm;
attachments[0].samples = vk::SampleCountFlagBits::e1;
attachments[0].loadOp = vk::AttachmentLoadOp::eDontCare;
attachments[0].storeOp = vk::AttachmentStoreOp::eStore;
attachments[0].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
attachments[0].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
attachments[0].initialLayout = vk::ImageLayout::eUndefined;
attachments[0].finalLayout = vk::ImageLayout::eGeneral;
vk::AttachmentReference subpass0_attachmentRefs[1];
subpass0_attachmentRefs[0].attachment = 0;
subpass0_attachmentRefs[0].layout = vk::ImageLayout::eColorAttachmentOptimal;
vk::SubpassDescription subpasses[1];
subpasses[0].pipelineBindPoint = vk::PipelineBindPoint::eGraphics;
subpasses[0].colorAttachmentCount = 1;
subpasses[0].pColorAttachments = subpass0_attachmentRefs;
vk::RenderPassCreateInfo renderpassCreateInfo;
renderpassCreateInfo.attachmentCount = 1;
renderpassCreateInfo.pAttachments = attachments;
renderpassCreateInfo.subpassCount = 1;
renderpassCreateInfo.pSubpasses = subpasses;
renderpassCreateInfo.dependencyCount = 0;
renderpassCreateInfo.pDependencies = nullptr;
vk::UniqueRenderPass renderpass = device->createRenderPassUnique(renderpassCreateInfo);
vk::Viewport viewports[1];
viewports[0].x = 0.0;
viewports[0].y = 0.0;
viewports[0].minDepth = 0.0;
viewports[0].maxDepth = 1.0;
viewports[0].width = screenWidth;
viewports[0].height = screenHeight;
vk::Rect2D scissors[1];
scissors[0].offset = { 0, 0 };
scissors[0].extent = { screenWidth, screenHeight };
vk::PipelineViewportStateCreateInfo viewportState;
viewportState.viewportCount = 1;
viewportState.pViewports = viewports;
viewportState.scissorCount = 1;
viewportState.pScissors = scissors;
vk::PipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.vertexAttributeDescriptionCount = 0;
vertexInputInfo.pVertexAttributeDescriptions = nullptr;
vertexInputInfo.vertexBindingDescriptionCount = 0;
vertexInputInfo.pVertexBindingDescriptions = nullptr;
vk::PipelineInputAssemblyStateCreateInfo inputAssembly;
inputAssembly.topology = vk::PrimitiveTopology::eTriangleList;
inputAssembly.primitiveRestartEnable = false;
vk::PipelineRasterizationStateCreateInfo rasterizer;
rasterizer.depthClampEnable = false;
rasterizer.rasterizerDiscardEnable = false;
rasterizer.polygonMode = vk::PolygonMode::eFill;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = vk::CullModeFlagBits::eBack;
rasterizer.frontFace = vk::FrontFace::eClockwise;
rasterizer.depthBiasEnable = false;
vk::PipelineMultisampleStateCreateInfo multisample;
multisample.sampleShadingEnable = false;
multisample.rasterizationSamples = vk::SampleCountFlagBits::e1;
vk::PipelineColorBlendAttachmentState blendattachment[1];
blendattachment[0].colorWriteMask =
vk::ColorComponentFlagBits::eA |
vk::ColorComponentFlagBits::eR |
vk::ColorComponentFlagBits::eG |
vk::ColorComponentFlagBits::eB;
blendattachment[0].blendEnable = false;
vk::PipelineColorBlendStateCreateInfo blend;
blend.logicOpEnable = false;
blend.attachmentCount = 1;
blend.pAttachments = blendattachment;
vk::PipelineLayoutCreateInfo layoutCreateInfo;
layoutCreateInfo.setLayoutCount = 0;
layoutCreateInfo.pSetLayouts = nullptr;
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(layoutCreateInfo);
size_t vertSpvFileSz = std::filesystem::file_size("shader.vert.spv");
std::ifstream vertSpvFile("shader.vert.spv", std::ios_base::binary);
std::vector<char> vertSpvFileData(vertSpvFileSz);
vertSpvFile.read(vertSpvFileData.data(), vertSpvFileSz);
vk::ShaderModuleCreateInfo vertShaderCreateInfo;
vertShaderCreateInfo.codeSize = vertSpvFileSz;
vertShaderCreateInfo.pCode = reinterpret_cast<const uint32_t*>(vertSpvFileData.data());
vk::UniqueShaderModule vertShader = device->createShaderModuleUnique(vertShaderCreateInfo);
size_t fragSpvFileSz = std::filesystem::file_size("shader.frag.spv");
std::ifstream fragSpvFile("shader.frag.spv", std::ios_base::binary);
std::vector<char> fragSpvFileData(fragSpvFileSz);
fragSpvFile.read(fragSpvFileData.data(), fragSpvFileSz);
vk::ShaderModuleCreateInfo fragShaderCreateInfo;
fragShaderCreateInfo.codeSize = fragSpvFileSz;
fragShaderCreateInfo.pCode = reinterpret_cast<const uint32_t*>(fragSpvFileData.data());
vk::UniqueShaderModule fragShader = device->createShaderModuleUnique(fragShaderCreateInfo);
vk::PipelineShaderStageCreateInfo shaderStage[2];
shaderStage[0].stage = vk::ShaderStageFlagBits::eVertex;
shaderStage[0].module = vertShader.get();
shaderStage[0].pName = "main";
shaderStage[1].stage = vk::ShaderStageFlagBits::eFragment;
shaderStage[1].module = fragShader.get();
shaderStage[1].pName = "main";
vk::GraphicsPipelineCreateInfo pipelineCreateInfo;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssembly;
pipelineCreateInfo.pRasterizationState = &rasterizer;
pipelineCreateInfo.pMultisampleState = &multisample;
pipelineCreateInfo.pColorBlendState = &blend;
pipelineCreateInfo.layout = pipelineLayout.get();
pipelineCreateInfo.renderPass = renderpass.get();
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = shaderStage;
vk::UniquePipeline pipeline = device->createGraphicsPipelineUnique(nullptr, pipelineCreateInfo).value;
vk::ImageViewCreateInfo imgViewCreateInfo;
imgViewCreateInfo.image = image.get();
imgViewCreateInfo.viewType = vk::ImageViewType::e2D;
imgViewCreateInfo.format = vk::Format::eR8G8B8A8Unorm;
imgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eColor;
imgViewCreateInfo.subresourceRange.baseMipLevel = 0;
imgViewCreateInfo.subresourceRange.levelCount = 1;
imgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
imgViewCreateInfo.subresourceRange.layerCount = 1;
vk::UniqueImageView imgView = device->createImageViewUnique(imgViewCreateInfo);
vk::ImageView frameBufAttachments[1];
frameBufAttachments[0] = imgView.get();
vk::FramebufferCreateInfo frameBufCreateInfo;
frameBufCreateInfo.width = screenWidth;
frameBufCreateInfo.height = screenHeight;
frameBufCreateInfo.layers = 1;
frameBufCreateInfo.renderPass = renderpass.get();
frameBufCreateInfo.attachmentCount = 1;
frameBufCreateInfo.pAttachments = frameBufAttachments;
vk::UniqueFramebuffer frameBuf = device->createFramebufferUnique(frameBufCreateInfo);
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBufs[0]->begin(cmdBeginInfo);
// コマンドを記録
cmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = { cmdBufs[0].get() };
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
graphicsQueue.submit({ submitInfo }, nullptr);
return 0;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
void main() {
if(gl_VertexIndex == 0) {
gl_Position = vec4(0.0, -0.5, 0.0, 1.0);
} else if(gl_VertexIndex == 1) {
gl_Position = vec4(0.5, 0.5, 0.0, 1.0);
} else if(gl_VertexIndex == 2) {
gl_Position = vec4(-0.5, 0.5, 0.0, 1.0);
}
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) out vec4 outColor;
void main() {
outColor = vec4(1.0, 0.0, 0.0, 1.0);
}
cmake_minimum_required(VERSION 3.22)
project(vulkan-test)
set(CMAKE_CXX_STANDARD 17)
add_executable(app main.cpp)
find_package(Vulkan REQUIRED)
target_include_directories(app PRIVATE ${Vulkan_INCLUDE_DIRS})
target_link_libraries(app PRIVATE ${Vulkan_LIBRARIES})