前回までで、コマンドバッファの作成までを行いました。今回は前回までで準備したものを使って描画を行っていきます。
スワップチェーンは表示する画像(イメージ)を次々に切り替えていく機構だということは既にお話ししました。スワップチェーンを利用する私たちの側としては「次に表示される予定のイメージ」に描画を行いたいわけです。
そこで「次に描画を行うべきイメージ」を、論理デバイスのacquireNextImageKHR
メソッドで取得します。前回スワップチェーンのイメージを配列として取得しましたが、その何番目のイメージという番号の形で手に入ります。このメソッド、次に描画するべきイメージを教えてくれるだけでなく「描画されてもいいように準備する処理」なども含んでいるため、スワップチェーンのイメージに描画する前には必ず呼ぶ必要があります。
※本当に正確には「描画された後表示されてもいいように準備する処理」っぽいですが、なんにせよちゃんと呼んでください
以下の処理をそれぞれ追加しましょう。
// while文の前に追加
vk::FenceCreateInfo fenceCreateInfo;
vk::UniqueFence swapchainImgFence = device->createFenceUnique(fenceCreateInfo);
// while文の中, glfwPollEvents()の後に追加
device->resetFences({ swapchainImgFence.get() });
vk::ResultValue acquireImgResult = device->acquireNextImageKHR(swapchain.get(), 1'000'000'000, {}, swapchainImgFence.get());
if (acquireImgResult.result != vk::Result::eSuccess) {
std::cerr << "次フレームの取得に失敗しました。" << std::endl;
return -1;
}
uint32_t imgIndex = acquireImgResult.value;
if (device->waitForFences({ swapchainImgFence.get() }, VK_TRUE, 1'000'000'000) != vk::Result::eSuccess) {
std::cerr << "次フレームの取得に失敗しました。" << std::endl;
return -1;
}
acquireNextImageKHR
の第二引数はタイムアウト時間(最大待ち時間)です。単位はナノ秒で、ここでは1'000'000'000ナノ秒=1秒としています。UINT64_MAX
を指定した場合は無制限に待ちます。
Vulkan-Hppの場合、acquireNextImageKHR
の戻り値は、vk::ResultValue
という値と結果(エラー情報)がひとまとまりになった型で返ってきます。エラー情報を確認し、問題がなさそうなら値を取得しています。
もう一つ重要なのが、「フェンス」を使って同期処理を行っているところです。実はこのacquireNextImageKHR
、ただちに描画の準備を整えてくれるわけではありません。キューにコマンドを送信した時などと同じように、少し待たないと描画の準備を完了してくれません。いわゆる非同期処理ですね。(ややこしいのですが、イメージのインデックスだけ返り値として先に返してくれます。)
コマンド送信の時はwaitIdle()
などを使っていましたが今回はキューの処理ではないので、フェンスを利用して描画の準備が終わるまで待機しています。フェンスについては補講2を参照してください。
描画の準備が完了したらようやく描画(レンダリング)ができます。acquireNextImage
で番号を取得した「次に描画するべきイメージ」に向けてレンダリングを行いましょう。while文の中に以下の処理を追加してください。
// コマンドバッファのリセット
cmdBufs[0]->reset();
// コマンドバッファへのコマンドの記録
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBufs[0]->begin();
vk::ClearValue clearVal[1];
clearVal[0].color.float32[0] = 0.0f;
clearVal[0].color.float32[1] = 0.0f;
clearVal[0].color.float32[2] = 0.0f;
clearVal[0].color.float32[3] = 1.0f;
vk::RenderPassBeginInfo renderpassBeginInfo;
renderpassBeginInfo.renderPass = renderpass.get();
renderpassBeginInfo.framebuffer = swapchainFramebufs[imgIndex].get(); // 次に表示するイメージに対応するフレームバッファを指定
renderpassBeginInfo.renderArea = vk::Rect2D({ 0,0 }, { screenWidth, screenHeight });
renderpassBeginInfo.clearValueCount = 1;
renderpassBeginInfo.pClearValues = clearVal;
cmdBufs[0]->beginRenderPass(renderpassBeginInfo, vk::SubpassContents::eInline);
cmdBufs[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.get());
cmdBufs[0]->draw(3, 1, 0, 0);
cmdBufs[0]->endRenderPass();
cmdBufs[0]->end();
// コマンドバッファの送信
vk::CommandBuffer submitCmdBuf[1] = { cmdBufs[0].get() };
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
graphicsQueue.submit({ submitInfo }, nullptr);
// 終了待機
graphicsQueue.waitIdle();
これでようやくレンダリング処理が出来ました!
さて、まだ終わりではありません。「プレゼンテーション」を行うまではイメージに描画したものは表示されないのです。次回でようやくウィンドウに三角形が表示できます。
今回はスワップチェーンのイメージへのレンダリングを行いました。次節では描画したイメージを表示します。
注意点として、この節の段階のプログラムを実行すると途中でエラーが出ます。 描画(レンダリング)だけして表示(プレゼンテーション)をしないと、そのフレームのイメージが再度使える状態にならないからです。この節のコード
#include <iostream>
#include <fstream>
#include <filesystem>
#include <vulkan/vulkan.hpp>
#include <GLFW/glfw3.h>
const uint32_t screenWidth = 640;
const uint32_t screenHeight = 480;
int main() {
if (!glfwInit())
return -1;
uint32_t requiredExtensionsCount;
const char** requiredExtensions = glfwGetRequiredInstanceExtensions(&requiredExtensionsCount);
vk::InstanceCreateInfo createInfo;
createInfo.enabledExtensionCount = requiredExtensionsCount;
createInfo.ppEnabledExtensionNames = requiredExtensions;
vk::UniqueInstance instance;
instance = vk::createInstanceUnique(createInfo);
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
GLFWwindow* window;
window = glfwCreateWindow(screenWidth, screenHeight, "GLFW Test Window", NULL, NULL);
if (!window) {
const char* err;
glfwGetError(&err);
std::cout << err << std::endl;
glfwTerminate();
return -1;
}
VkSurfaceKHR c_surface;
auto result = glfwCreateWindowSurface(instance.get(), window, nullptr, &c_surface);
if (result != VK_SUCCESS) {
const char* err;
glfwGetError(&err);
std::cout << err << std::endl;
glfwTerminate();
return -1;
}
vk::UniqueSurfaceKHR surface{ c_surface, instance.get() };
std::vector<vk::PhysicalDevice> physicalDevices = instance->enumeratePhysicalDevices();
vk::PhysicalDevice physicalDevice;
bool existsSuitablePhysicalDevice = false;
uint32_t graphicsQueueFamilyIndex;
for (size_t i = 0; i < physicalDevices.size(); i++) {
std::vector<vk::QueueFamilyProperties> queueProps = physicalDevices[i].getQueueFamilyProperties();
bool existsGraphicsQueue = false;
for (size_t j = 0; j < queueProps.size(); j++) {
if (queueProps[j].queueFlags & vk::QueueFlagBits::eGraphics) {
existsGraphicsQueue = true;
graphicsQueueFamilyIndex = j;
break;
}
}
std::vector<vk::ExtensionProperties> extProps = physicalDevices[i].enumerateDeviceExtensionProperties();
bool supportsSwapchainExtension = false;
for (size_t j = 0; j < extProps.size(); j++) {
if (std::string_view(extProps[j].extensionName.data()) == VK_KHR_SWAPCHAIN_EXTENSION_NAME) {
supportsSwapchainExtension = true;
break;
}
}
if (existsGraphicsQueue && supportsSwapchainExtension) {
physicalDevice = physicalDevices[i];
existsSuitablePhysicalDevice = true;
break;
}
}
if (!existsSuitablePhysicalDevice) {
std::cerr << "使用可能な物理デバイスがありません。" << std::endl;
return -1;
}
vk::DeviceCreateInfo devCreateInfo;
auto devRequiredExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME };
devCreateInfo.enabledExtensionCount = devRequiredExtensions.size();
devCreateInfo.ppEnabledExtensionNames = devRequiredExtensions.begin();
vk::DeviceQueueCreateInfo queueCreateInfo[1];
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamilyIndex;
queueCreateInfo[0].queueCount = 1;
float queuePriorities[1] = { 1.0 };
queueCreateInfo[0].pQueuePriorities = queuePriorities;
devCreateInfo.pQueueCreateInfos = queueCreateInfo;
devCreateInfo.queueCreateInfoCount = 1;
vk::UniqueDevice device = physicalDevice.createDeviceUnique(devCreateInfo);
vk::Queue graphicsQueue = device->getQueue(graphicsQueueFamilyIndex, 0);
vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface.get());
std::vector<vk::SurfaceFormatKHR> surfaceFormats = physicalDevice.getSurfaceFormatsKHR(surface.get());
std::vector<vk::PresentModeKHR> surfacePresentModes = physicalDevice.getSurfacePresentModesKHR(surface.get());
vk::SurfaceFormatKHR swapchainFormat = surfaceFormats[0];
vk::PresentModeKHR swapchainPresentMode = surfacePresentModes[0];
vk::SwapchainCreateInfoKHR swapchainCreateInfo;
swapchainCreateInfo.surface = surface.get();
swapchainCreateInfo.minImageCount = surfaceCapabilities.minImageCount + 1;
swapchainCreateInfo.imageFormat = swapchainFormat.format;
swapchainCreateInfo.imageColorSpace = swapchainFormat.colorSpace;
swapchainCreateInfo.imageExtent = surfaceCapabilities.currentExtent;
swapchainCreateInfo.imageArrayLayers = 1;
swapchainCreateInfo.imageUsage = vk::ImageUsageFlagBits::eColorAttachment;
swapchainCreateInfo.imageSharingMode = vk::SharingMode::eExclusive;
swapchainCreateInfo.preTransform = surfaceCapabilities.currentTransform;
swapchainCreateInfo.presentMode = swapchainPresentMode;
swapchainCreateInfo.clipped = VK_TRUE;
vk::UniqueSwapchainKHR swapchain = device->createSwapchainKHRUnique(swapchainCreateInfo);
std::vector<vk::Image> swapchainImages = device->getSwapchainImagesKHR(swapchain.get());
vk::AttachmentDescription attachments[1];
attachments[0].format = swapchainFormat.format;
attachments[0].samples = vk::SampleCountFlagBits::e1;
attachments[0].loadOp = vk::AttachmentLoadOp::eClear;
attachments[0].storeOp = vk::AttachmentStoreOp::eStore;
attachments[0].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
attachments[0].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
attachments[0].initialLayout = vk::ImageLayout::eUndefined;
attachments[0].finalLayout = vk::ImageLayout::ePresentSrcKHR;
vk::AttachmentReference subpass0_attachmentRefs[1];
subpass0_attachmentRefs[0].attachment = 0;
subpass0_attachmentRefs[0].layout = vk::ImageLayout::eColorAttachmentOptimal;
vk::SubpassDescription subpasses[1];
subpasses[0].pipelineBindPoint = vk::PipelineBindPoint::eGraphics;
subpasses[0].colorAttachmentCount = 1;
subpasses[0].pColorAttachments = subpass0_attachmentRefs;
vk::RenderPassCreateInfo renderpassCreateInfo;
renderpassCreateInfo.attachmentCount = 1;
renderpassCreateInfo.pAttachments = attachments;
renderpassCreateInfo.subpassCount = 1;
renderpassCreateInfo.pSubpasses = subpasses;
renderpassCreateInfo.dependencyCount = 0;
renderpassCreateInfo.pDependencies = nullptr;
vk::UniqueRenderPass renderpass = device->createRenderPassUnique(renderpassCreateInfo);
vk::Viewport viewports[1];
viewports[0].x = 0.0;
viewports[0].y = 0.0;
viewports[0].minDepth = 0.0;
viewports[0].maxDepth = 1.0;
viewports[0].width = screenWidth;
viewports[0].height = screenHeight;
vk::Rect2D scissors[1];
scissors[0].offset = vk::Offset2D{ 0, 0 };
scissors[0].extent = vk::Extent2D{ screenWidth, screenHeight };
vk::PipelineViewportStateCreateInfo viewportState;
viewportState.viewportCount = 1;
viewportState.pViewports = viewports;
viewportState.scissorCount = 1;
viewportState.pScissors = scissors;
vk::PipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.vertexAttributeDescriptionCount = 0;
vertexInputInfo.pVertexAttributeDescriptions = nullptr;
vertexInputInfo.vertexBindingDescriptionCount = 0;
vertexInputInfo.pVertexBindingDescriptions = nullptr;
vk::PipelineInputAssemblyStateCreateInfo inputAssembly;
inputAssembly.topology = vk::PrimitiveTopology::eTriangleList;
inputAssembly.primitiveRestartEnable = false;
vk::PipelineRasterizationStateCreateInfo rasterizer;
rasterizer.depthClampEnable = false;
rasterizer.rasterizerDiscardEnable = false;
rasterizer.polygonMode = vk::PolygonMode::eFill;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = vk::CullModeFlagBits::eBack;
rasterizer.frontFace = vk::FrontFace::eClockwise;
rasterizer.depthBiasEnable = false;
vk::PipelineMultisampleStateCreateInfo multisample;
multisample.sampleShadingEnable = false;
multisample.rasterizationSamples = vk::SampleCountFlagBits::e1;
vk::PipelineColorBlendAttachmentState blendattachment[1];
blendattachment[0].colorWriteMask =
vk::ColorComponentFlagBits::eA |
vk::ColorComponentFlagBits::eR |
vk::ColorComponentFlagBits::eG |
vk::ColorComponentFlagBits::eB;
blendattachment[0].blendEnable = false;
vk::PipelineColorBlendStateCreateInfo blend;
blend.logicOpEnable = false;
blend.attachmentCount = 1;
blend.pAttachments = blendattachment;
vk::PipelineLayoutCreateInfo layoutCreateInfo;
layoutCreateInfo.setLayoutCount = 0;
layoutCreateInfo.pSetLayouts = nullptr;
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(layoutCreateInfo);
size_t vertSpvFileSz = std::filesystem::file_size("shader.vert.spv");
std::ifstream vertSpvFile("shader.vert.spv", std::ios_base::binary);
std::vector<char> vertSpvFileData(vertSpvFileSz);
vertSpvFile.read(vertSpvFileData.data(), vertSpvFileSz);
vk::ShaderModuleCreateInfo vertShaderCreateInfo;
vertShaderCreateInfo.codeSize = vertSpvFileSz;
vertShaderCreateInfo.pCode = reinterpret_cast<const uint32_t*>(vertSpvFileData.data());
vk::UniqueShaderModule vertShader = device->createShaderModuleUnique(vertShaderCreateInfo);
size_t fragSpvFileSz = std::filesystem::file_size("shader.frag.spv");
std::ifstream fragSpvFile("shader.frag.spv", std::ios_base::binary);
std::vector<char> fragSpvFileData(fragSpvFileSz);
fragSpvFile.read(fragSpvFileData.data(), fragSpvFileSz);
vk::ShaderModuleCreateInfo fragShaderCreateInfo;
fragShaderCreateInfo.codeSize = fragSpvFileSz;
fragShaderCreateInfo.pCode = reinterpret_cast<const uint32_t*>(fragSpvFileData.data());
vk::UniqueShaderModule fragShader = device->createShaderModuleUnique(fragShaderCreateInfo);
vk::PipelineShaderStageCreateInfo shaderStage[2];
shaderStage[0].stage = vk::ShaderStageFlagBits::eVertex;
shaderStage[0].module = vertShader.get();
shaderStage[0].pName = "main";
shaderStage[1].stage = vk::ShaderStageFlagBits::eFragment;
shaderStage[1].module = fragShader.get();
shaderStage[1].pName = "main";
vk::GraphicsPipelineCreateInfo pipelineCreateInfo;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssembly;
pipelineCreateInfo.pRasterizationState = &rasterizer;
pipelineCreateInfo.pMultisampleState = &multisample;
pipelineCreateInfo.pColorBlendState = &blend;
pipelineCreateInfo.layout = pipelineLayout.get();
pipelineCreateInfo.renderPass = renderpass.get();
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = shaderStage;
vk::UniquePipeline pipeline = device->createGraphicsPipelineUnique(nullptr, pipelineCreateInfo).value;
std::vector<vk::UniqueImageView> swapchainImageViews(swapchainImages.size());
for (size_t i = 0; i < swapchainImages.size(); i++) {
vk::ImageViewCreateInfo imgViewCreateInfo;
imgViewCreateInfo.image = swapchainImages[i];
imgViewCreateInfo.viewType = vk::ImageViewType::e2D;
imgViewCreateInfo.format = swapchainFormat.format;
imgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eColor;
imgViewCreateInfo.subresourceRange.baseMipLevel = 0;
imgViewCreateInfo.subresourceRange.levelCount = 1;
imgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
imgViewCreateInfo.subresourceRange.layerCount = 1;
swapchainImageViews[i] = device->createImageViewUnique(imgViewCreateInfo);
}
std::vector<vk::UniqueFramebuffer> swapchainFramebufs(swapchainImages.size());
for (size_t i = 0; i < swapchainImages.size(); i++) {
vk::ImageView frameBufAttachments[1];
frameBufAttachments[0] = swapchainImageViews[i].get();
vk::FramebufferCreateInfo frameBufCreateInfo;
frameBufCreateInfo.width = surfaceCapabilities.currentExtent.width;
frameBufCreateInfo.height = surfaceCapabilities.currentExtent.height;
frameBufCreateInfo.layers = 1;
frameBufCreateInfo.renderPass = renderpass.get();
frameBufCreateInfo.attachmentCount = 1;
frameBufCreateInfo.pAttachments = frameBufAttachments;
swapchainFramebufs[i] = device->createFramebufferUnique(frameBufCreateInfo);
}
vk::CommandPoolCreateInfo cmdPoolCreateInfo;
cmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
cmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
vk::UniqueCommandPool cmdPool = device->createCommandPoolUnique(cmdPoolCreateInfo);
vk::CommandBufferAllocateInfo cmdBufAllocInfo;
cmdBufAllocInfo.commandPool = cmdPool.get();
cmdBufAllocInfo.commandBufferCount = 1;
cmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> cmdBufs =
device->allocateCommandBuffersUnique(cmdBufAllocInfo);
vk::FenceCreateInfo fenceCreateInfo;
vk::UniqueFence swapchainImgFence = device->createFenceUnique(fenceCreateInfo);
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
device->resetFences({ swapchainImgFence.get() });
vk::ResultValue acquireImgResult = device->acquireNextImageKHR(swapchain.get(), 1'000'000'000, {}, swapchainImgFence.get());
if (acquireImgResult.result != vk::Result::eSuccess) {
std::cerr << "次フレームの取得に失敗しました。" << std::endl;
return -1;
}
uint32_t imgIndex = acquireImgResult.value;
if (device->waitForFences({ swapchainImgFence.get() }, VK_TRUE, 1'000'000'000) != vk::Result::eSuccess) {
std::cerr << "次フレームの取得に失敗しました。" << std::endl;
return -1;
}
cmdBufs[0]->reset();
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBufs[0]->begin(cmdBeginInfo);
vk::ClearValue clearVal[1];
clearVal[0].color.float32[0] = 0.0f;
clearVal[0].color.float32[1] = 0.0f;
clearVal[0].color.float32[2] = 0.0f;
clearVal[0].color.float32[3] = 1.0f;
vk::RenderPassBeginInfo renderpassBeginInfo;
renderpassBeginInfo.renderPass = renderpass.get();
renderpassBeginInfo.framebuffer = swapchainFramebufs[imgIndex].get();
renderpassBeginInfo.renderArea = vk::Rect2D({ 0,0 }, { screenWidth, screenHeight });
renderpassBeginInfo.clearValueCount = 1;
renderpassBeginInfo.pClearValues = clearVal;
cmdBufs[0]->beginRenderPass(renderpassBeginInfo, vk::SubpassContents::eInline);
cmdBufs[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.get());
cmdBufs[0]->draw(3, 1, 0, 0);
cmdBufs[0]->endRenderPass();
cmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = { cmdBufs[0].get() };
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
graphicsQueue.submit({ submitInfo }, nullptr);
graphicsQueue.waitIdle();
}
glfwTerminate();
return 0;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
void main() {
if(gl_VertexIndex == 0) {
gl_Position = vec4(0.0, -0.5, 0.0, 1.0);
} else if(gl_VertexIndex == 1) {
gl_Position = vec4(0.5, 0.5, 0.0, 1.0);
} else if(gl_VertexIndex == 2) {
gl_Position = vec4(-0.5, 0.5, 0.0, 1.0);
}
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) out vec4 outColor;
void main() {
outColor = vec4(1.0, 0.0, 0.0, 1.0);
}
cmake_minimum_required(VERSION 3.22)
project(vulkan-test)
set(CMAKE_CXX_STANDARD 17)
add_executable(app main.cpp)
find_package(Vulkan REQUIRED)
target_include_directories(app PRIVATE ${Vulkan_INCLUDE_DIRS})
target_link_libraries(app PRIVATE ${Vulkan_LIBRARIES})
find_package(glfw3 CONFIG REQUIRED)
target_link_libraries(app PRIVATE glfw)