前節でユニフォーム変数に値を渡しましたが、今度はせっかくなのでユニフォーム変数の値を毎フレーム更新してみましょう。簡単なアニメーションをします。
前の節でも説明した通り、デスクリプタはあくまでポインタのようなものなので、デスクリプタを更新しなくてもユニフォームバッファの内容さえ更新すればデータを変更できます。
まず、書き込むたびにいちいちメモリマッピングをするのはコストがかかるので、アプリケーションの終了時までマッピングしっぱなしにしておきましょう。
int main() {
// (中略)
// メモリマッピング開始
void* pUniformBufMem = device->mapMemory(uniformBufMemory.get(), 0, sizeof(SceneData));
// (中略)
while(!glfwWindowShouldClose(window)) {
// (中略)
graphicsQueue.presentKHR(presentInfo);
}
device->unmapMemory(uniformBufMemory.get()); // ここに移動
glfwTerminate();
return 0;
}
ユニフォームバッファへの書き込み処理はメインループの中へ移します。
float time = 0;
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
// (中略)
device->resetFences({ imgRenderedFence.get() });
// データを用意
sceneData.rectCenter = Vec2{ 0.3f * cosf(time), 0.3f * sinf(time) };
time += 0.001;
// ユニフォームバッファに書き込み
std::memcpy(pUniformBufMem, &sceneData, sizeof(SceneData));
vk::MappedMemoryRange flushMemoryRange;
flushMemoryRange.memory = uniformBufMemory.get();
flushMemoryRange.offset = 0;
flushMemoryRange.size = sizeof(SceneData);
device->flushMappedMemoryRanges({ flushMemoryRange });
// (中略)
}
とりあえずシンプルな例としてぐるぐる回るアニメーションにしてみました。これで実行してみましょう。
単純なものですが、ようやくアニメーションを表示することが出来ました!
ところで、どこか動きがぎくしゃくしていますね。これは動作時のフレームレートが一定とは限らないためです。実際のゲームなどでは、1フレームの経過時間を測定してそれに比例した移動量となるよう調整するなどの処理を行います。Vulkanの解説からは外れてしまうのでその辺は宿題としましょう。
Vulkanで何か動きのあるものを作る場合、頂点バッファなどの値を更新してももちろん動きはするのですが、そういうことはあまりしないのが普通です。値を更新することになるのは主にこのユニフォームバッファ(もしくは次節で紹介するプッシュ定数)になります。
例えばキャラクターを表示して動かすのであれば、頂点バッファにキャラクターの3Dモデルを読み込み、ユニフォームバッファにキャラクターの姿勢とか表情とかのデータを入れてシェーダで適宜変形するといった実装が考えられます。ちょっとずつ実用的なVulkanアプリケーションの想像が付いてきましたでしょうか。
この節ではデスクリプタの応用として単純なアニメーションの実装を行いました。 次節ではプッシュ定数の解説をします。この節のコード
#include <vulkan/vulkan.hpp>
#include <GLFW/glfw3.h>
#include <filesystem>
#include <fstream>
#include <iostream>
const uint32_t screenWidth = 640;
const uint32_t screenHeight = 480;
struct Vec2 {
float x, y;
};
struct Vec3 {
float x, y, z;
};
struct Vertex {
Vec2 pos;
Vec3 color;
};
std::vector<Vertex> vertices = {
Vertex{Vec2{-0.5f, -0.5f}, Vec3{0.0, 0.0, 1.0}},
Vertex{Vec2{0.5f, 0.5f}, Vec3{0.0, 1.0, 0.0}},
Vertex{Vec2{-0.5f, 0.5f}, Vec3{1.0, 0.0, 0.0}},
Vertex{Vec2{0.5f, -0.5f}, Vec3{1.0, 1.0, 1.0}},
};
std::vector<uint16_t> indices = {0, 1, 2, 1, 0, 3};
struct SceneData {
Vec2 rectCenter;
};
SceneData sceneData = { Vec2{ 0.3, -0.2 } };
int main() {
if (!glfwInit())
return -1;
uint32_t requiredExtensionsCount;
const char **requiredExtensions = glfwGetRequiredInstanceExtensions(&requiredExtensionsCount);
vk::InstanceCreateInfo createInfo;
createInfo.enabledExtensionCount = requiredExtensionsCount;
createInfo.ppEnabledExtensionNames = requiredExtensions;
vk::UniqueInstance instance;
instance = vk::createInstanceUnique(createInfo);
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
GLFWwindow *window;
window = glfwCreateWindow(screenWidth, screenHeight, "GLFW Test Window", NULL, NULL);
if (!window) {
const char *err;
glfwGetError(&err);
std::cout << err << std::endl;
glfwTerminate();
return -1;
}
VkSurfaceKHR c_surface;
auto result = glfwCreateWindowSurface(instance.get(), window, nullptr, &c_surface);
if (result != VK_SUCCESS) {
const char *err;
glfwGetError(&err);
std::cout << err << std::endl;
glfwTerminate();
return -1;
}
vk::UniqueSurfaceKHR surface{c_surface, instance.get()};
std::vector<vk::PhysicalDevice> physicalDevices = instance->enumeratePhysicalDevices();
vk::PhysicalDevice physicalDevice;
bool existsSuitablePhysicalDevice = false;
uint32_t graphicsQueueFamilyIndex;
for (size_t i = 0; i < physicalDevices.size(); i++) {
std::vector<vk::QueueFamilyProperties> queueProps = physicalDevices[i].getQueueFamilyProperties();
bool existsGraphicsQueue = false;
for (size_t j = 0; j < queueProps.size(); j++) {
if (queueProps[j].queueFlags & vk::QueueFlagBits::eGraphics && physicalDevices[i].getSurfaceSupportKHR(j, surface.get())) {
existsGraphicsQueue = true;
graphicsQueueFamilyIndex = j;
break;
}
}
std::vector<vk::ExtensionProperties> extProps = physicalDevices[i].enumerateDeviceExtensionProperties();
bool supportsSwapchainExtension = false;
for (size_t j = 0; j < extProps.size(); j++) {
if (std::string_view(extProps[j].extensionName.data()) == VK_KHR_SWAPCHAIN_EXTENSION_NAME) {
supportsSwapchainExtension = true;
break;
}
}
if (existsGraphicsQueue && supportsSwapchainExtension) {
physicalDevice = physicalDevices[i];
existsSuitablePhysicalDevice = true;
break;
}
}
if (!existsSuitablePhysicalDevice) {
std::cerr << "使用可能な物理デバイスがありません。" << std::endl;
return -1;
}
vk::DeviceCreateInfo devCreateInfo;
auto devRequiredExtensions = {VK_KHR_SWAPCHAIN_EXTENSION_NAME};
devCreateInfo.enabledExtensionCount = devRequiredExtensions.size();
devCreateInfo.ppEnabledExtensionNames = devRequiredExtensions.begin();
vk::DeviceQueueCreateInfo queueCreateInfo[1];
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamilyIndex;
queueCreateInfo[0].queueCount = 1;
float queuePriorities[1] = {1.0};
queueCreateInfo[0].pQueuePriorities = queuePriorities;
devCreateInfo.pQueueCreateInfos = queueCreateInfo;
devCreateInfo.queueCreateInfoCount = 1;
vk::UniqueDevice device = physicalDevice.createDeviceUnique(devCreateInfo);
vk::Queue graphicsQueue = device->getQueue(graphicsQueueFamilyIndex, 0);
vk::PhysicalDeviceMemoryProperties memProps = physicalDevice.getMemoryProperties();
vk::BufferCreateInfo vertBufferCreateInfo;
vertBufferCreateInfo.size = sizeof(Vertex) * vertices.size();
vertBufferCreateInfo.usage = vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eTransferDst;
vertBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer vertexBuf = device->createBufferUnique(vertBufferCreateInfo);
vk::MemoryRequirements vertexBufMemReq = device->getBufferMemoryRequirements(vertexBuf.get());
vk::MemoryAllocateInfo vertexBufMemAllocInfo;
vertexBufMemAllocInfo.allocationSize = vertexBufMemReq.size;
bool suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (vertexBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal)) {
vertexBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory vertexBufMemory = device->allocateMemoryUnique(vertexBufMemAllocInfo);
device->bindBufferMemory(vertexBuf.get(), vertexBufMemory.get(), 0);
{
vk::BufferCreateInfo stagingBufferCreateInfo;
stagingBufferCreateInfo.size = sizeof(Vertex) * vertices.size();
stagingBufferCreateInfo.usage = vk::BufferUsageFlagBits::eTransferSrc;
stagingBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer stagingBuf = device->createBufferUnique(stagingBufferCreateInfo);
vk::MemoryRequirements stagingBufMemReq = device->getBufferMemoryRequirements(stagingBuf.get());
vk::MemoryAllocateInfo stagingBufMemAllocInfo;
stagingBufMemAllocInfo.allocationSize = stagingBufMemReq.size;
suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (stagingBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
stagingBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory stagingBufMemory = device->allocateMemoryUnique(stagingBufMemAllocInfo);
device->bindBufferMemory(stagingBuf.get(), stagingBufMemory.get(), 0);
void *pStagingBufMem = device->mapMemory(stagingBufMemory.get(), 0, sizeof(Vertex) * vertices.size());
std::memcpy(pStagingBufMem, vertices.data(), sizeof(Vertex) * vertices.size());
vk::MappedMemoryRange flushMemoryRange;
flushMemoryRange.memory = stagingBufMemory.get();
flushMemoryRange.offset = 0;
flushMemoryRange.size = sizeof(Vertex) * vertices.size();
device->flushMappedMemoryRanges({flushMemoryRange});
device->unmapMemory(stagingBufMemory.get());
vk::CommandPoolCreateInfo tmpCmdPoolCreateInfo;
tmpCmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
tmpCmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eTransient;
vk::UniqueCommandPool tmpCmdPool = device->createCommandPoolUnique(tmpCmdPoolCreateInfo);
vk::CommandBufferAllocateInfo tmpCmdBufAllocInfo;
tmpCmdBufAllocInfo.commandPool = tmpCmdPool.get();
tmpCmdBufAllocInfo.commandBufferCount = 1;
tmpCmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> tmpCmdBufs = device->allocateCommandBuffersUnique(tmpCmdBufAllocInfo);
vk::BufferCopy bufCopy;
bufCopy.srcOffset = 0;
bufCopy.dstOffset = 0;
bufCopy.size = sizeof(Vertex) * vertices.size();
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBeginInfo.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit;
tmpCmdBufs[0]->begin(cmdBeginInfo);
tmpCmdBufs[0]->copyBuffer(stagingBuf.get(), vertexBuf.get(), {bufCopy});
tmpCmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = {tmpCmdBufs[0].get()};
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
graphicsQueue.submit({submitInfo});
graphicsQueue.waitIdle();
}
vk::BufferCreateInfo indexBufferCreateInfo;
indexBufferCreateInfo.size = sizeof(uint16_t) * indices.size();
indexBufferCreateInfo.usage = vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eTransferDst;
indexBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer indexBuf = device->createBufferUnique(indexBufferCreateInfo);
vk::MemoryRequirements indexBufMemReq = device->getBufferMemoryRequirements(indexBuf.get());
vk::MemoryAllocateInfo indexBufMemAllocInfo;
indexBufMemAllocInfo.allocationSize = indexBufMemReq.size;
suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (indexBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal)) {
indexBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory indexBufMemory = device->allocateMemoryUnique(indexBufMemAllocInfo);
device->bindBufferMemory(indexBuf.get(), indexBufMemory.get(), 0);
{
vk::BufferCreateInfo stagingBufferCreateInfo;
stagingBufferCreateInfo.size = sizeof(uint16_t) * indices.size();
stagingBufferCreateInfo.usage = vk::BufferUsageFlagBits::eTransferSrc;
stagingBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer stagingBuf = device->createBufferUnique(stagingBufferCreateInfo);
vk::MemoryRequirements stagingBufMemReq = device->getBufferMemoryRequirements(stagingBuf.get());
vk::MemoryAllocateInfo stagingBufMemAllocInfo;
stagingBufMemAllocInfo.allocationSize = stagingBufMemReq.size;
suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (stagingBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
stagingBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory stagingBufMemory = device->allocateMemoryUnique(stagingBufMemAllocInfo);
device->bindBufferMemory(stagingBuf.get(), stagingBufMemory.get(), 0);
void *pStagingBufMem = device->mapMemory(stagingBufMemory.get(), 0, sizeof(uint16_t) * indices.size());
std::memcpy(pStagingBufMem, indices.data(), sizeof(uint16_t) * indices.size());
vk::MappedMemoryRange flushMemoryRange;
flushMemoryRange.memory = stagingBufMemory.get();
flushMemoryRange.offset = 0;
flushMemoryRange.size = sizeof(uint16_t) * indices.size();
device->flushMappedMemoryRanges({flushMemoryRange});
device->unmapMemory(stagingBufMemory.get());
vk::CommandPoolCreateInfo tmpCmdPoolCreateInfo;
tmpCmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
tmpCmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eTransient;
vk::UniqueCommandPool tmpCmdPool = device->createCommandPoolUnique(tmpCmdPoolCreateInfo);
vk::CommandBufferAllocateInfo tmpCmdBufAllocInfo;
tmpCmdBufAllocInfo.commandPool = tmpCmdPool.get();
tmpCmdBufAllocInfo.commandBufferCount = 1;
tmpCmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> tmpCmdBufs = device->allocateCommandBuffersUnique(tmpCmdBufAllocInfo);
vk::BufferCopy bufCopy;
bufCopy.srcOffset = 0;
bufCopy.dstOffset = 0;
bufCopy.size = sizeof(uint16_t) * indices.size();
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBeginInfo.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit;
tmpCmdBufs[0]->begin(cmdBeginInfo);
tmpCmdBufs[0]->copyBuffer(stagingBuf.get(), indexBuf.get(), {bufCopy});
tmpCmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = {tmpCmdBufs[0].get()};
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
graphicsQueue.submit({submitInfo});
graphicsQueue.waitIdle();
}
vk::BufferCreateInfo uniformBufferCreateInfo;
uniformBufferCreateInfo.size = sizeof(SceneData);
uniformBufferCreateInfo.usage = vk::BufferUsageFlagBits::eUniformBuffer;
uniformBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer uniformBuf = device->createBufferUnique(uniformBufferCreateInfo);
vk::MemoryRequirements uniformBufMemReq = device->getBufferMemoryRequirements(uniformBuf.get());
vk::MemoryAllocateInfo uniformBufMemAllocInfo;
uniformBufMemAllocInfo.allocationSize = uniformBufMemReq.size;
suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (uniformBufMemReq.memoryTypeBits & (1 << i) &&
(memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
uniformBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory uniformBufMemory = device->allocateMemoryUnique(uniformBufMemAllocInfo);
device->bindBufferMemory(uniformBuf.get(), uniformBufMemory.get(), 0);
void* pUniformBufMem = device->mapMemory(uniformBufMemory.get(), 0, sizeof(SceneData));
vk::DescriptorSetLayoutBinding descSetLayoutBinding[1];
descSetLayoutBinding[0].binding = 0;
descSetLayoutBinding[0].descriptorType = vk::DescriptorType::eUniformBuffer;
descSetLayoutBinding[0].descriptorCount = 1;
descSetLayoutBinding[0].stageFlags = vk::ShaderStageFlagBits::eVertex;
vk::DescriptorSetLayoutCreateInfo descSetLayoutCreateInfo{};
descSetLayoutCreateInfo.bindingCount = 1;
descSetLayoutCreateInfo.pBindings = descSetLayoutBinding;
vk::UniqueDescriptorSetLayout descSetLayout = device->createDescriptorSetLayoutUnique(descSetLayoutCreateInfo);
vk::DescriptorPoolSize descPoolSize[1];
descPoolSize[0].type = vk::DescriptorType::eUniformBuffer;
descPoolSize[0].descriptorCount = 1;
vk::DescriptorPoolCreateInfo descPoolCreateInfo;
descPoolCreateInfo.poolSizeCount = 1;
descPoolCreateInfo.pPoolSizes = descPoolSize;
descPoolCreateInfo.maxSets = 1;
vk::UniqueDescriptorPool descPool = device->createDescriptorPoolUnique(descPoolCreateInfo);
vk::DescriptorSetAllocateInfo descSetAllocInfo;
auto descSetLayouts = { descSetLayout.get() };
descSetAllocInfo.descriptorPool = descPool.get();
descSetAllocInfo.descriptorSetCount = descSetLayouts.size();
descSetAllocInfo.pSetLayouts = descSetLayouts.begin();
std::vector<vk::UniqueDescriptorSet> descSets = device->allocateDescriptorSetsUnique(descSetAllocInfo);
vk::WriteDescriptorSet writeDescSet;
writeDescSet.dstSet = descSets[0].get();
writeDescSet.dstBinding = 0;
writeDescSet.dstArrayElement = 0;
writeDescSet.descriptorType = vk::DescriptorType::eUniformBuffer;
vk::DescriptorBufferInfo descBufInfo[1];
descBufInfo[0].buffer = uniformBuf.get();
descBufInfo[0].offset = 0;
descBufInfo[0].range = sizeof(SceneData);
writeDescSet.descriptorCount = 1;
writeDescSet.pBufferInfo = descBufInfo;
device->updateDescriptorSets({ writeDescSet }, {});
std::vector<vk::SurfaceFormatKHR> surfaceFormats = physicalDevice.getSurfaceFormatsKHR(surface.get());
std::vector<vk::PresentModeKHR> surfacePresentModes = physicalDevice.getSurfacePresentModesKHR(surface.get());
vk::SurfaceFormatKHR swapchainFormat = surfaceFormats[0];
vk::PresentModeKHR swapchainPresentMode = surfacePresentModes[0];
vk::AttachmentDescription attachments[1];
attachments[0].format = swapchainFormat.format;
attachments[0].samples = vk::SampleCountFlagBits::e1;
attachments[0].loadOp = vk::AttachmentLoadOp::eClear;
attachments[0].storeOp = vk::AttachmentStoreOp::eStore;
attachments[0].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
attachments[0].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
attachments[0].initialLayout = vk::ImageLayout::eUndefined;
attachments[0].finalLayout = vk::ImageLayout::ePresentSrcKHR;
vk::AttachmentReference subpass0_attachmentRefs[1];
subpass0_attachmentRefs[0].attachment = 0;
subpass0_attachmentRefs[0].layout = vk::ImageLayout::eColorAttachmentOptimal;
vk::SubpassDescription subpasses[1];
subpasses[0].pipelineBindPoint = vk::PipelineBindPoint::eGraphics;
subpasses[0].colorAttachmentCount = 1;
subpasses[0].pColorAttachments = subpass0_attachmentRefs;
vk::RenderPassCreateInfo renderpassCreateInfo;
renderpassCreateInfo.attachmentCount = 1;
renderpassCreateInfo.pAttachments = attachments;
renderpassCreateInfo.subpassCount = 1;
renderpassCreateInfo.pSubpasses = subpasses;
renderpassCreateInfo.dependencyCount = 0;
renderpassCreateInfo.pDependencies = nullptr;
vk::UniqueRenderPass renderpass = device->createRenderPassUnique(renderpassCreateInfo);
vk::Viewport viewports[1];
viewports[0].x = 0.0;
viewports[0].y = 0.0;
viewports[0].minDepth = 0.0;
viewports[0].maxDepth = 1.0;
viewports[0].width = screenWidth;
viewports[0].height = screenHeight;
vk::Rect2D scissors[1];
scissors[0].offset = vk::Offset2D{0, 0};
scissors[0].extent = vk::Extent2D{screenWidth, screenHeight};
vk::PipelineViewportStateCreateInfo viewportState;
viewportState.viewportCount = 1;
viewportState.pViewports = viewports;
viewportState.scissorCount = 1;
viewportState.pScissors = scissors;
vk::VertexInputBindingDescription vertexBindingDescription[1];
vertexBindingDescription[0].binding = 0;
vertexBindingDescription[0].stride = sizeof(Vertex);
vertexBindingDescription[0].inputRate = vk::VertexInputRate::eVertex;
vk::VertexInputAttributeDescription vertexInputDescription[2];
vertexInputDescription[0].binding = 0;
vertexInputDescription[0].location = 0;
vertexInputDescription[0].format = vk::Format::eR32G32Sfloat;
vertexInputDescription[0].offset = offsetof(Vertex, pos);
vertexInputDescription[1].binding = 0;
vertexInputDescription[1].location = 1;
vertexInputDescription[1].format = vk::Format::eR32G32B32Sfloat;
vertexInputDescription[1].offset = offsetof(Vertex, color);
vk::PipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.vertexBindingDescriptionCount = std::size(vertexBindingDescription);
vertexInputInfo.pVertexBindingDescriptions = vertexBindingDescription;
vertexInputInfo.vertexAttributeDescriptionCount = std::size(vertexInputDescription);
vertexInputInfo.pVertexAttributeDescriptions = vertexInputDescription;
vk::PipelineInputAssemblyStateCreateInfo inputAssembly;
inputAssembly.topology = vk::PrimitiveTopology::eTriangleList;
inputAssembly.primitiveRestartEnable = false;
vk::PipelineRasterizationStateCreateInfo rasterizer;
rasterizer.depthClampEnable = false;
rasterizer.rasterizerDiscardEnable = false;
rasterizer.polygonMode = vk::PolygonMode::eFill;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = vk::CullModeFlagBits::eBack;
rasterizer.frontFace = vk::FrontFace::eClockwise;
rasterizer.depthBiasEnable = false;
vk::PipelineMultisampleStateCreateInfo multisample;
multisample.sampleShadingEnable = false;
multisample.rasterizationSamples = vk::SampleCountFlagBits::e1;
vk::PipelineColorBlendAttachmentState blendattachment[1];
blendattachment[0].colorWriteMask = vk::ColorComponentFlagBits::eA | vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG | vk::ColorComponentFlagBits::eB;
blendattachment[0].blendEnable = false;
vk::PipelineColorBlendStateCreateInfo blend;
blend.logicOpEnable = false;
blend.attachmentCount = 1;
blend.pAttachments = blendattachment;
auto pipelineDescSetLayouts = { descSetLayout.get() };
vk::PipelineLayoutCreateInfo layoutCreateInfo;
layoutCreateInfo.setLayoutCount = pipelineDescSetLayouts.size();
layoutCreateInfo.pSetLayouts = pipelineDescSetLayouts.begin();
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(layoutCreateInfo);
size_t vertSpvFileSz = std::filesystem::file_size("shader.vert.spv");
std::ifstream vertSpvFile("shader.vert.spv", std::ios_base::binary);
std::vector<char> vertSpvFileData(vertSpvFileSz);
vertSpvFile.read(vertSpvFileData.data(), vertSpvFileSz);
vk::ShaderModuleCreateInfo vertShaderCreateInfo;
vertShaderCreateInfo.codeSize = vertSpvFileSz;
vertShaderCreateInfo.pCode = reinterpret_cast<const uint32_t *>(vertSpvFileData.data());
vk::UniqueShaderModule vertShader = device->createShaderModuleUnique(vertShaderCreateInfo);
size_t fragSpvFileSz = std::filesystem::file_size("shader.frag.spv");
std::ifstream fragSpvFile("shader.frag.spv", std::ios_base::binary);
std::vector<char> fragSpvFileData(fragSpvFileSz);
fragSpvFile.read(fragSpvFileData.data(), fragSpvFileSz);
vk::ShaderModuleCreateInfo fragShaderCreateInfo;
fragShaderCreateInfo.codeSize = fragSpvFileSz;
fragShaderCreateInfo.pCode = reinterpret_cast<const uint32_t *>(fragSpvFileData.data());
vk::UniqueShaderModule fragShader = device->createShaderModuleUnique(fragShaderCreateInfo);
vk::PipelineShaderStageCreateInfo shaderStage[2];
shaderStage[0].stage = vk::ShaderStageFlagBits::eVertex;
shaderStage[0].module = vertShader.get();
shaderStage[0].pName = "main";
shaderStage[1].stage = vk::ShaderStageFlagBits::eFragment;
shaderStage[1].module = fragShader.get();
shaderStage[1].pName = "main";
vk::GraphicsPipelineCreateInfo pipelineCreateInfo;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssembly;
pipelineCreateInfo.pRasterizationState = &rasterizer;
pipelineCreateInfo.pMultisampleState = &multisample;
pipelineCreateInfo.pColorBlendState = &blend;
pipelineCreateInfo.layout = pipelineLayout.get();
pipelineCreateInfo.renderPass = renderpass.get();
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = shaderStage;
vk::UniquePipeline pipeline = device->createGraphicsPipelineUnique(nullptr, pipelineCreateInfo).value;
vk::UniqueSwapchainKHR swapchain;
std::vector<vk::Image> swapchainImages;
std::vector<vk::UniqueImageView> swapchainImageViews;
std::vector<vk::UniqueFramebuffer> swapchainFramebufs;
auto recreateSwapchain = [&]() {
swapchainFramebufs.clear();
swapchainImageViews.clear();
swapchainImages.clear();
swapchain.reset();
vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface.get());
vk::SwapchainCreateInfoKHR swapchainCreateInfo;
swapchainCreateInfo.surface = surface.get();
swapchainCreateInfo.minImageCount = surfaceCapabilities.minImageCount + 1;
swapchainCreateInfo.imageFormat = swapchainFormat.format;
swapchainCreateInfo.imageColorSpace = swapchainFormat.colorSpace;
swapchainCreateInfo.imageExtent = surfaceCapabilities.currentExtent;
swapchainCreateInfo.imageArrayLayers = 1;
swapchainCreateInfo.imageUsage = vk::ImageUsageFlagBits::eColorAttachment;
swapchainCreateInfo.imageSharingMode = vk::SharingMode::eExclusive;
swapchainCreateInfo.preTransform = surfaceCapabilities.currentTransform;
swapchainCreateInfo.presentMode = swapchainPresentMode;
swapchainCreateInfo.clipped = VK_TRUE;
swapchain = device->createSwapchainKHRUnique(swapchainCreateInfo);
swapchainImages = device->getSwapchainImagesKHR(swapchain.get());
swapchainImageViews.resize(swapchainImages.size());
for (size_t i = 0; i < swapchainImages.size(); i++) {
vk::ImageViewCreateInfo imgViewCreateInfo;
imgViewCreateInfo.image = swapchainImages[i];
imgViewCreateInfo.viewType = vk::ImageViewType::e2D;
imgViewCreateInfo.format = swapchainFormat.format;
imgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eColor;
imgViewCreateInfo.subresourceRange.baseMipLevel = 0;
imgViewCreateInfo.subresourceRange.levelCount = 1;
imgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
imgViewCreateInfo.subresourceRange.layerCount = 1;
swapchainImageViews[i] = device->createImageViewUnique(imgViewCreateInfo);
}
swapchainFramebufs.resize(swapchainImages.size());
for (size_t i = 0; i < swapchainImages.size(); i++) {
vk::ImageView frameBufAttachments[1];
frameBufAttachments[0] = swapchainImageViews[i].get();
vk::FramebufferCreateInfo frameBufCreateInfo;
frameBufCreateInfo.width = surfaceCapabilities.currentExtent.width;
frameBufCreateInfo.height = surfaceCapabilities.currentExtent.height;
frameBufCreateInfo.layers = 1;
frameBufCreateInfo.renderPass = renderpass.get();
frameBufCreateInfo.attachmentCount = 1;
frameBufCreateInfo.pAttachments = frameBufAttachments;
swapchainFramebufs[i] = device->createFramebufferUnique(frameBufCreateInfo);
}
};
recreateSwapchain();
vk::CommandPoolCreateInfo cmdPoolCreateInfo;
cmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
cmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
vk::UniqueCommandPool cmdPool = device->createCommandPoolUnique(cmdPoolCreateInfo);
vk::CommandBufferAllocateInfo cmdBufAllocInfo;
cmdBufAllocInfo.commandPool = cmdPool.get();
cmdBufAllocInfo.commandBufferCount = 1;
cmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> cmdBufs = device->allocateCommandBuffersUnique(cmdBufAllocInfo);
vk::SemaphoreCreateInfo semaphoreCreateInfo;
vk::UniqueSemaphore swapchainImgSemaphore, imgRenderedSemaphore;
swapchainImgSemaphore = device->createSemaphoreUnique(semaphoreCreateInfo);
imgRenderedSemaphore = device->createSemaphoreUnique(semaphoreCreateInfo);
vk::FenceCreateInfo fenceCreateInfo;
fenceCreateInfo.flags = vk::FenceCreateFlagBits::eSignaled;
vk::UniqueFence imgRenderedFence = device->createFenceUnique(fenceCreateInfo);
float time = 0;
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
device->waitForFences({imgRenderedFence.get()}, VK_TRUE, UINT64_MAX);
vk::ResultValue acquireImgResult = device->acquireNextImageKHR(swapchain.get(), 1'000'000'000, swapchainImgSemaphore.get());
if (acquireImgResult.result == vk::Result::eSuboptimalKHR || acquireImgResult.result == vk::Result::eErrorOutOfDateKHR) {
std::cerr << "スワップチェーンを再作成します。" << std::endl;
recreateSwapchain();
continue;
}
if (acquireImgResult.result != vk::Result::eSuccess) {
std::cerr << "次フレームの取得に失敗しました。" << std::endl;
return -1;
}
device->resetFences({imgRenderedFence.get()});
sceneData.rectCenter = Vec2{ 0.3f * cosf(time), 0.3f * sinf(time) };
time += 0.001;
std::memcpy(pUniformBufMem, &sceneData, sizeof(SceneData));
vk::MappedMemoryRange flushMemoryRange;
flushMemoryRange.memory = uniformBufMemory.get();
flushMemoryRange.offset = 0;
flushMemoryRange.size = sizeof(SceneData);
device->flushMappedMemoryRanges({ flushMemoryRange });
uint32_t imgIndex = acquireImgResult.value;
cmdBufs[0]->reset();
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBufs[0]->begin(cmdBeginInfo);
vk::ClearValue clearVal[1];
clearVal[0].color.float32[0] = 0.0f;
clearVal[0].color.float32[1] = 0.0f;
clearVal[0].color.float32[2] = 0.0f;
clearVal[0].color.float32[3] = 1.0f;
vk::RenderPassBeginInfo renderpassBeginInfo;
renderpassBeginInfo.renderPass = renderpass.get();
renderpassBeginInfo.framebuffer = swapchainFramebufs[imgIndex].get();
renderpassBeginInfo.renderArea = vk::Rect2D({0, 0}, {screenWidth, screenHeight});
renderpassBeginInfo.clearValueCount = 1;
renderpassBeginInfo.pClearValues = clearVal;
cmdBufs[0]->beginRenderPass(renderpassBeginInfo, vk::SubpassContents::eInline);
cmdBufs[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.get());
cmdBufs[0]->bindVertexBuffers(0, {vertexBuf.get()}, {0});
cmdBufs[0]->bindIndexBuffer(indexBuf.get(), 0, vk::IndexType::eUint16);
cmdBufs[0]->bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, { descSets[0].get() }, {});
cmdBufs[0]->drawIndexed(indices.size(), 1, 0, 0, 0);
cmdBufs[0]->endRenderPass();
cmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = {cmdBufs[0].get()};
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
vk::Semaphore renderwaitSemaphores[] = {swapchainImgSemaphore.get()};
vk::PipelineStageFlags renderwaitStages[] = {vk::PipelineStageFlagBits::eColorAttachmentOutput};
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = renderwaitSemaphores;
submitInfo.pWaitDstStageMask = renderwaitStages;
vk::Semaphore renderSignalSemaphores[] = {imgRenderedSemaphore.get()};
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = renderSignalSemaphores;
graphicsQueue.submit({submitInfo}, imgRenderedFence.get());
vk::PresentInfoKHR presentInfo;
auto presentSwapchains = {swapchain.get()};
auto imgIndices = {imgIndex};
presentInfo.swapchainCount = presentSwapchains.size();
presentInfo.pSwapchains = presentSwapchains.begin();
presentInfo.pImageIndices = imgIndices.begin();
vk::Semaphore presenWaitSemaphores[] = {imgRenderedSemaphore.get()};
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = presenWaitSemaphores;
graphicsQueue.presentKHR(presentInfo);
}
device->unmapMemory(uniformBufMemory.get());
graphicsQueue.waitIdle();
glfwTerminate();
return 0;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(set = 0, binding = 0) uniform SceneData {
vec2 rectCenter;
} sceneData;
layout(location = 0) in vec2 inPos;
layout(location = 1) in vec3 inColor;
layout(location = 0) out vec3 fragmentColor;
void main() {
gl_Position = vec4(sceneData.rectCenter + inPos, 0.0, 1.0);
fragmentColor = inColor;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) in vec3 fragmentColor;
layout(location = 0) out vec4 outColor;
void main() {
outColor = vec4(fragmentColor, 1.0);
}
cmake_minimum_required(VERSION 3.22)
project(vulkan-test)
set(CMAKE_CXX_STANDARD 17)
add_executable(app main.cpp)
find_package(Vulkan REQUIRED)
target_include_directories(app PRIVATE ${Vulkan_INCLUDE_DIRS})
target_link_libraries(app PRIVATE ${Vulkan_LIBRARIES})
find_package(glfw3 CONFIG REQUIRED)
target_link_libraries(app PRIVATE glfw)