この節ではいよいよバッファを用いて描画を行います。前節まででほとんど準備は終わっているので、この節では本当にバッファをコマンドバッファにバインドするだけです。
コマンドバッファに頂点バッファをバインド(結びつけ)するためにはbindVertexBuffers
メソッドを使います。bindPipeline
でパイプラインを結びつけたのと同じような感じですね。
コマンドバッファに描画コマンドを記録している部分に以下の1行を追加しましょう。
cmdBufs[0]->beginRenderPass(renderpassBeginInfo, vk::SubpassContents::eInline);
cmdBufs[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.get());
cmdBufs[0]->bindVertexBuffers(0, { vertexBuf.get() }, { 0 }); // 追加
cmdBufs[0]->draw(3, 1, 0, 0);
cmdBufs[0]->endRenderPass();
バインド処理はこれだけです。
bindVertexBuffers
は一度に複数のバッファを結び付けることができます。(Buffersと複数形になっていますね!)また、バッファの中から用いるデータの位置を指定することもできます。ただし、今回は1つのバッファを単純にバインドしているだけなのでそれらは活用されていません。
第1引数はバッファをバインドするバインディングの番号を指定します。バインディングというものがいくつもあって0,1,2,3...と番号が振られている、ということを前の節で説明したかと思いますが、ここにはその「何番目からバインドするか」という数字を指定します。
ひとつ例を出すと、第1引数に「2」という数値を指定し、第2・第3引数でバッファA,B,Cという3つのバッファを指定した場合、
- バインディング2番にバッファA
- バインディング3番にバッファB
- バインディング4番にバッファC
という風にバインドされます。
第2引数・第3引数でバインドするバッファ(群)を指定します。それぞれ配列を渡しますが、この2つの配列の長さは等しくなければなりません。第2引数でバッファオブジェクト、第3引数で用いるデータの位置(バイト単位)を指定します。今回はバインドするバッファは1つだけなので、どちらも長さ1の配列を渡しています。
今回はバッファの先頭からのデータを利用するので第3引数には「0」を指定していますが、例えば100頂点以上のデータがバッファに記録されている場合、sizeof(Vertex) * 100
を指定すれば101個目からの頂点データが利用されます。
これでシェーダにデータを渡す処理がようやく完成しました。では、渡されたデータを用いて描画するシェーダに変えましょう。5-1節で出した以下のコードに変えてください。glslcでシェーダの再コンパイルも忘れずに!
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) in vec2 inPos;
void main() {
gl_Position = vec4(inPos, 0.0, 1.0);
}
コードを実行してみましょう。
今までと同じく三角形が描画できました。これまでと違うのは、この三角形の座標はデータで管理されているという点です。変数verticesの中身を以下のように変更してみましょう。
std::vector<Vertex> vertices = {
Vertex{-0.5f, -0.5f },
Vertex{ 0.5f, 0.0f },
Vertex{-0.5f, 0.5f },
};
シェーダのコードは変えていないのにデータの変更だけでちゃんと描画内容が変わりました!
今度は頂点の数を増やしてみましょう。並んだ3つ1組で1つの三角形として解釈されます。
std::vector<Vertex> vertices = {
Vertex{-0.5f, -0.5f },
Vertex{ 0.5f, 0.5f },
Vertex{-0.5f, 0.5f },
Vertex{ 0.5f, 0.5f },
Vertex{-0.5f, -0.5f },
Vertex{ 0.5f, -0.5f },
};
おっと、描画命令で指定している頂点の数が3に固定されたままでしたね。これも修正しておきましょう。
cmdBufs[0]->draw(vertices.size(), 1, 0, 0); // 第1引数は頂点の数
しっかり表示できていますね。
今回のコードではまだメインのプログラムに数値を埋め込んでいます。しかし適切に実装すれば、ファイルなどにモデルの頂点データを入れておいて、それを変数に読み込むこともできるというのが分かるかと思います。モデルの読み込みに向けて大きく前進しました。
この節ではバッファのバインドを行いました。次節では頂点シェーダに複数のデータを渡してみます。この節のコード
#include <iostream>
#include <fstream>
#include <filesystem>
#include <vulkan/vulkan.hpp>
#include <GLFW/glfw3.h>
const uint32_t screenWidth = 640;
const uint32_t screenHeight = 480;
struct Vertex {
float x, y;
};
std::vector<Vertex> vertices = {
Vertex{ 0.0f, -0.5f },
Vertex{ 0.5f, 0.5f },
Vertex{-0.5f, 0.5f },
};
int main() {
if (!glfwInit())
return -1;
uint32_t requiredExtensionsCount;
const char** requiredExtensions = glfwGetRequiredInstanceExtensions(&requiredExtensionsCount);
vk::InstanceCreateInfo createInfo;
createInfo.enabledExtensionCount = requiredExtensionsCount;
createInfo.ppEnabledExtensionNames = requiredExtensions;
vk::UniqueInstance instance;
instance = vk::createInstanceUnique(createInfo);
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
GLFWwindow* window;
window = glfwCreateWindow(screenWidth, screenHeight, "GLFW Test Window", NULL, NULL);
if (!window) {
const char* err;
glfwGetError(&err);
std::cout << err << std::endl;
glfwTerminate();
return -1;
}
VkSurfaceKHR c_surface;
auto result = glfwCreateWindowSurface(instance.get(), window, nullptr, &c_surface);
if (result != VK_SUCCESS) {
const char* err;
glfwGetError(&err);
std::cout << err << std::endl;
glfwTerminate();
return -1;
}
vk::UniqueSurfaceKHR surface{ c_surface, instance.get() };
std::vector<vk::PhysicalDevice> physicalDevices = instance->enumeratePhysicalDevices();
vk::PhysicalDevice physicalDevice;
bool existsSuitablePhysicalDevice = false;
uint32_t graphicsQueueFamilyIndex;
for (size_t i = 0; i < physicalDevices.size(); i++) {
std::vector<vk::QueueFamilyProperties> queueProps = physicalDevices[i].getQueueFamilyProperties();
bool existsGraphicsQueue = false;
for (size_t j = 0; j < queueProps.size(); j++) {
if (queueProps[j].queueFlags & vk::QueueFlagBits::eGraphics &&
physicalDevices[i].getSurfaceSupportKHR(j, surface.get())) {
existsGraphicsQueue = true;
graphicsQueueFamilyIndex = j;
break;
}
}
std::vector<vk::ExtensionProperties> extProps = physicalDevices[i].enumerateDeviceExtensionProperties();
bool supportsSwapchainExtension = false;
for (size_t j = 0; j < extProps.size(); j++) {
if (std::string_view(extProps[j].extensionName.data()) == VK_KHR_SWAPCHAIN_EXTENSION_NAME) {
supportsSwapchainExtension = true;
break;
}
}
if (existsGraphicsQueue && supportsSwapchainExtension) {
physicalDevice = physicalDevices[i];
existsSuitablePhysicalDevice = true;
break;
}
}
if (!existsSuitablePhysicalDevice) {
std::cerr << "使用可能な物理デバイスがありません。" << std::endl;
return -1;
}
vk::DeviceCreateInfo devCreateInfo;
auto devRequiredExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME };
devCreateInfo.enabledExtensionCount = devRequiredExtensions.size();
devCreateInfo.ppEnabledExtensionNames = devRequiredExtensions.begin();
vk::DeviceQueueCreateInfo queueCreateInfo[1];
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamilyIndex;
queueCreateInfo[0].queueCount = 1;
float queuePriorities[1] = { 1.0 };
queueCreateInfo[0].pQueuePriorities = queuePriorities;
devCreateInfo.pQueueCreateInfos = queueCreateInfo;
devCreateInfo.queueCreateInfoCount = 1;
vk::UniqueDevice device = physicalDevice.createDeviceUnique(devCreateInfo);
vk::Queue graphicsQueue = device->getQueue(graphicsQueueFamilyIndex, 0);
vk::BufferCreateInfo vertBufferCreateInfo;
vertBufferCreateInfo.size = sizeof(Vertex) * vertices.size();
vertBufferCreateInfo.usage = vk::BufferUsageFlagBits::eVertexBuffer;
vertBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::PhysicalDeviceMemoryProperties memProps = physicalDevice.getMemoryProperties();
vk::UniqueBuffer vertexBuf = device->createBufferUnique(vertBufferCreateInfo);
vk::MemoryRequirements vertexBufMemReq = device->getBufferMemoryRequirements(vertexBuf.get());
vk::MemoryAllocateInfo vertexBufMemAllocInfo;
vertexBufMemAllocInfo.allocationSize = vertexBufMemReq.size;
bool suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (vertexBufMemReq.memoryTypeBits & (1 << i) &&
(memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
vertexBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory vertexBufMemory = device->allocateMemoryUnique(vertexBufMemAllocInfo);
device->bindBufferMemory(vertexBuf.get(), vertexBufMemory.get(), 0);
void* vertexBufMem = device->mapMemory(vertexBufMemory.get(), 0, sizeof(Vertex) * vertices.size());
std::memcpy(vertexBufMem, vertices.data(), sizeof(Vertex) * vertices.size());
vk::MappedMemoryRange flushMemoryRange;
flushMemoryRange.memory = vertexBufMemory.get();
flushMemoryRange.offset = 0;
flushMemoryRange.size = sizeof(Vertex) * vertices.size();
device->flushMappedMemoryRanges({ flushMemoryRange });
device->unmapMemory(vertexBufMemory.get());
std::vector<vk::SurfaceFormatKHR> surfaceFormats = physicalDevice.getSurfaceFormatsKHR(surface.get());
std::vector<vk::PresentModeKHR> surfacePresentModes = physicalDevice.getSurfacePresentModesKHR(surface.get());
vk::SurfaceFormatKHR swapchainFormat = surfaceFormats[0];
vk::PresentModeKHR swapchainPresentMode = surfacePresentModes[0];
vk::AttachmentDescription attachments[1];
attachments[0].format = swapchainFormat.format;
attachments[0].samples = vk::SampleCountFlagBits::e1;
attachments[0].loadOp = vk::AttachmentLoadOp::eClear;
attachments[0].storeOp = vk::AttachmentStoreOp::eStore;
attachments[0].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
attachments[0].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
attachments[0].initialLayout = vk::ImageLayout::eUndefined;
attachments[0].finalLayout = vk::ImageLayout::ePresentSrcKHR;
vk::AttachmentReference subpass0_attachmentRefs[1];
subpass0_attachmentRefs[0].attachment = 0;
subpass0_attachmentRefs[0].layout = vk::ImageLayout::eColorAttachmentOptimal;
vk::SubpassDescription subpasses[1];
subpasses[0].pipelineBindPoint = vk::PipelineBindPoint::eGraphics;
subpasses[0].colorAttachmentCount = 1;
subpasses[0].pColorAttachments = subpass0_attachmentRefs;
vk::RenderPassCreateInfo renderpassCreateInfo;
renderpassCreateInfo.attachmentCount = 1;
renderpassCreateInfo.pAttachments = attachments;
renderpassCreateInfo.subpassCount = 1;
renderpassCreateInfo.pSubpasses = subpasses;
renderpassCreateInfo.dependencyCount = 0;
renderpassCreateInfo.pDependencies = nullptr;
vk::UniqueRenderPass renderpass = device->createRenderPassUnique(renderpassCreateInfo);
vk::Viewport viewports[1];
viewports[0].x = 0.0;
viewports[0].y = 0.0;
viewports[0].minDepth = 0.0;
viewports[0].maxDepth = 1.0;
viewports[0].width = screenWidth;
viewports[0].height = screenHeight;
vk::Rect2D scissors[1];
scissors[0].offset = vk::Offset2D{ 0, 0 };
scissors[0].extent = vk::Extent2D{ screenWidth, screenHeight };
vk::PipelineViewportStateCreateInfo viewportState;
viewportState.viewportCount = 1;
viewportState.pViewports = viewports;
viewportState.scissorCount = 1;
viewportState.pScissors = scissors;
vk::VertexInputBindingDescription vertexBindingDescription[1];
vertexBindingDescription[0].binding = 0;
vertexBindingDescription[0].stride = sizeof(Vertex);
vertexBindingDescription[0].inputRate = vk::VertexInputRate::eVertex;
vk::VertexInputAttributeDescription vertexInputDescription[1];
vertexInputDescription[0].binding = 0;
vertexInputDescription[0].location = 0;
vertexInputDescription[0].format = vk::Format::eR32G32Sfloat;
vertexInputDescription[0].offset = 0;
vk::PipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.vertexBindingDescriptionCount = std::size(vertexBindingDescription);
vertexInputInfo.pVertexBindingDescriptions = vertexBindingDescription;
vertexInputInfo.vertexAttributeDescriptionCount = std::size(vertexInputDescription);
vertexInputInfo.pVertexAttributeDescriptions = vertexInputDescription;
vk::PipelineInputAssemblyStateCreateInfo inputAssembly;
inputAssembly.topology = vk::PrimitiveTopology::eTriangleList;
inputAssembly.primitiveRestartEnable = false;
vk::PipelineRasterizationStateCreateInfo rasterizer;
rasterizer.depthClampEnable = false;
rasterizer.rasterizerDiscardEnable = false;
rasterizer.polygonMode = vk::PolygonMode::eFill;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = vk::CullModeFlagBits::eBack;
rasterizer.frontFace = vk::FrontFace::eClockwise;
rasterizer.depthBiasEnable = false;
vk::PipelineMultisampleStateCreateInfo multisample;
multisample.sampleShadingEnable = false;
multisample.rasterizationSamples = vk::SampleCountFlagBits::e1;
vk::PipelineColorBlendAttachmentState blendattachment[1];
blendattachment[0].colorWriteMask =
vk::ColorComponentFlagBits::eA |
vk::ColorComponentFlagBits::eR |
vk::ColorComponentFlagBits::eG |
vk::ColorComponentFlagBits::eB;
blendattachment[0].blendEnable = false;
vk::PipelineColorBlendStateCreateInfo blend;
blend.logicOpEnable = false;
blend.attachmentCount = 1;
blend.pAttachments = blendattachment;
vk::PipelineLayoutCreateInfo layoutCreateInfo;
layoutCreateInfo.setLayoutCount = 0;
layoutCreateInfo.pSetLayouts = nullptr;
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(layoutCreateInfo);
size_t vertSpvFileSz = std::filesystem::file_size("shader.vert.spv");
std::ifstream vertSpvFile("shader.vert.spv", std::ios_base::binary);
std::vector<char> vertSpvFileData(vertSpvFileSz);
vertSpvFile.read(vertSpvFileData.data(), vertSpvFileSz);
vk::ShaderModuleCreateInfo vertShaderCreateInfo;
vertShaderCreateInfo.codeSize = vertSpvFileSz;
vertShaderCreateInfo.pCode = reinterpret_cast<const uint32_t*>(vertSpvFileData.data());
vk::UniqueShaderModule vertShader = device->createShaderModuleUnique(vertShaderCreateInfo);
size_t fragSpvFileSz = std::filesystem::file_size("shader.frag.spv");
std::ifstream fragSpvFile("shader.frag.spv", std::ios_base::binary);
std::vector<char> fragSpvFileData(fragSpvFileSz);
fragSpvFile.read(fragSpvFileData.data(), fragSpvFileSz);
vk::ShaderModuleCreateInfo fragShaderCreateInfo;
fragShaderCreateInfo.codeSize = fragSpvFileSz;
fragShaderCreateInfo.pCode = reinterpret_cast<const uint32_t*>(fragSpvFileData.data());
vk::UniqueShaderModule fragShader = device->createShaderModuleUnique(fragShaderCreateInfo);
vk::PipelineShaderStageCreateInfo shaderStage[2];
shaderStage[0].stage = vk::ShaderStageFlagBits::eVertex;
shaderStage[0].module = vertShader.get();
shaderStage[0].pName = "main";
shaderStage[1].stage = vk::ShaderStageFlagBits::eFragment;
shaderStage[1].module = fragShader.get();
shaderStage[1].pName = "main";
vk::GraphicsPipelineCreateInfo pipelineCreateInfo;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssembly;
pipelineCreateInfo.pRasterizationState = &rasterizer;
pipelineCreateInfo.pMultisampleState = &multisample;
pipelineCreateInfo.pColorBlendState = &blend;
pipelineCreateInfo.layout = pipelineLayout.get();
pipelineCreateInfo.renderPass = renderpass.get();
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = shaderStage;
vk::UniquePipeline pipeline = device->createGraphicsPipelineUnique(nullptr, pipelineCreateInfo).value;
vk::UniqueSwapchainKHR swapchain;
std::vector<vk::Image> swapchainImages;
std::vector<vk::UniqueImageView> swapchainImageViews;
std::vector<vk::UniqueFramebuffer> swapchainFramebufs;
auto recreateSwapchain = [&](){
swapchainFramebufs.clear();
swapchainImageViews.clear();
swapchainImages.clear();
swapchain.reset();
vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface.get());
vk::SwapchainCreateInfoKHR swapchainCreateInfo;
swapchainCreateInfo.surface = surface.get();
swapchainCreateInfo.minImageCount = surfaceCapabilities.minImageCount + 1;
swapchainCreateInfo.imageFormat = swapchainFormat.format;
swapchainCreateInfo.imageColorSpace = swapchainFormat.colorSpace;
swapchainCreateInfo.imageExtent = surfaceCapabilities.currentExtent;
swapchainCreateInfo.imageArrayLayers = 1;
swapchainCreateInfo.imageUsage = vk::ImageUsageFlagBits::eColorAttachment;
swapchainCreateInfo.imageSharingMode = vk::SharingMode::eExclusive;
swapchainCreateInfo.preTransform = surfaceCapabilities.currentTransform;
swapchainCreateInfo.presentMode = swapchainPresentMode;
swapchainCreateInfo.clipped = VK_TRUE;
swapchain = device->createSwapchainKHRUnique(swapchainCreateInfo);
swapchainImages = device->getSwapchainImagesKHR(swapchain.get());
swapchainImageViews.resize(swapchainImages.size());
for (size_t i = 0; i < swapchainImages.size(); i++) {
vk::ImageViewCreateInfo imgViewCreateInfo;
imgViewCreateInfo.image = swapchainImages[i];
imgViewCreateInfo.viewType = vk::ImageViewType::e2D;
imgViewCreateInfo.format = swapchainFormat.format;
imgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eColor;
imgViewCreateInfo.subresourceRange.baseMipLevel = 0;
imgViewCreateInfo.subresourceRange.levelCount = 1;
imgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
imgViewCreateInfo.subresourceRange.layerCount = 1;
swapchainImageViews[i] = device->createImageViewUnique(imgViewCreateInfo);
}
swapchainFramebufs.resize(swapchainImages.size());
for (size_t i = 0; i < swapchainImages.size(); i++) {
vk::ImageView frameBufAttachments[1];
frameBufAttachments[0] = swapchainImageViews[i].get();
vk::FramebufferCreateInfo frameBufCreateInfo;
frameBufCreateInfo.width = surfaceCapabilities.currentExtent.width;
frameBufCreateInfo.height = surfaceCapabilities.currentExtent.height;
frameBufCreateInfo.layers = 1;
frameBufCreateInfo.renderPass = renderpass.get();
frameBufCreateInfo.attachmentCount = 1;
frameBufCreateInfo.pAttachments = frameBufAttachments;
swapchainFramebufs[i] = device->createFramebufferUnique(frameBufCreateInfo);
}
};
recreateSwapchain();
vk::CommandPoolCreateInfo cmdPoolCreateInfo;
cmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
cmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
vk::UniqueCommandPool cmdPool = device->createCommandPoolUnique(cmdPoolCreateInfo);
vk::CommandBufferAllocateInfo cmdBufAllocInfo;
cmdBufAllocInfo.commandPool = cmdPool.get();
cmdBufAllocInfo.commandBufferCount = 1;
cmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> cmdBufs =
device->allocateCommandBuffersUnique(cmdBufAllocInfo);
vk::SemaphoreCreateInfo semaphoreCreateInfo;
vk::UniqueSemaphore swapchainImgSemaphore, imgRenderedSemaphore;
swapchainImgSemaphore = device->createSemaphoreUnique(semaphoreCreateInfo);
imgRenderedSemaphore = device->createSemaphoreUnique(semaphoreCreateInfo);
vk::FenceCreateInfo fenceCreateInfo;
fenceCreateInfo.flags = vk::FenceCreateFlagBits::eSignaled;
vk::UniqueFence imgRenderedFence = device->createFenceUnique(fenceCreateInfo);
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
device->waitForFences({ imgRenderedFence.get()}, VK_TRUE, UINT64_MAX);
vk::ResultValue acquireImgResult = device->acquireNextImageKHR(swapchain.get(), 1'000'000'000, swapchainImgSemaphore.get());
if(acquireImgResult.result == vk::Result::eSuboptimalKHR || acquireImgResult.result == vk::Result::eErrorOutOfDateKHR) {
std::cerr << "スワップチェーンを再作成します。" << std::endl;
recreateSwapchain();
continue;
}
if (acquireImgResult.result != vk::Result::eSuccess) {
std::cerr << "次フレームの取得に失敗しました。" << std::endl;
return -1;
}
device->resetFences({ imgRenderedFence.get() });
uint32_t imgIndex = acquireImgResult.value;
cmdBufs[0]->reset();
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBufs[0]->begin(cmdBeginInfo);
vk::ClearValue clearVal[1];
clearVal[0].color.float32[0] = 0.0f;
clearVal[0].color.float32[1] = 0.0f;
clearVal[0].color.float32[2] = 0.0f;
clearVal[0].color.float32[3] = 1.0f;
vk::RenderPassBeginInfo renderpassBeginInfo;
renderpassBeginInfo.renderPass = renderpass.get();
renderpassBeginInfo.framebuffer = swapchainFramebufs[imgIndex].get();
renderpassBeginInfo.renderArea = vk::Rect2D({ 0,0 }, { screenWidth, screenHeight });
renderpassBeginInfo.clearValueCount = 1;
renderpassBeginInfo.pClearValues = clearVal;
cmdBufs[0]->beginRenderPass(renderpassBeginInfo, vk::SubpassContents::eInline);
cmdBufs[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.get());
cmdBufs[0]->bindVertexBuffers(0, { vertexBuf.get() }, { 0 });
cmdBufs[0]->draw(vertices.size(), 1, 0, 0);
cmdBufs[0]->endRenderPass();
cmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = { cmdBufs[0].get() };
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
vk::Semaphore renderwaitSemaphores[] = { swapchainImgSemaphore.get() };
vk::PipelineStageFlags renderwaitStages[] = { vk::PipelineStageFlagBits::eColorAttachmentOutput };
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = renderwaitSemaphores;
submitInfo.pWaitDstStageMask = renderwaitStages;
vk::Semaphore renderSignalSemaphores[] = { imgRenderedSemaphore.get() };
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = renderSignalSemaphores;
graphicsQueue.submit({ submitInfo }, imgRenderedFence.get());
vk::PresentInfoKHR presentInfo;
auto presentSwapchains = { swapchain.get() };
auto imgIndices = { imgIndex };
presentInfo.swapchainCount = presentSwapchains.size();
presentInfo.pSwapchains = presentSwapchains.begin();
presentInfo.pImageIndices = imgIndices.begin();
vk::Semaphore presenWaitSemaphores[] = { imgRenderedSemaphore.get() };
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = presenWaitSemaphores;
graphicsQueue.presentKHR(presentInfo);
}
graphicsQueue.waitIdle();
glfwTerminate();
return 0;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) in vec2 inPos;
void main() {
gl_Position = vec4(inPos, 0.0, 1.0);
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) out vec4 outColor;
void main() {
outColor = vec4(1.0, 0.0, 0.0, 1.0);
}
cmake_minimum_required(VERSION 3.22)
project(vulkan-test)
set(CMAKE_CXX_STANDARD 17)
add_executable(app main.cpp)
find_package(Vulkan REQUIRED)
target_include_directories(app PRIVATE ${Vulkan_INCLUDE_DIRS})
target_link_libraries(app PRIVATE ${Vulkan_LIBRARIES})
find_package(glfw3 CONFIG REQUIRED)
target_link_libraries(app PRIVATE glfw)