やっていくVulkan入門

7-2. レンダーパスとフレームバッファの設定

この節では、レンダーパスおよびフレームバッファを深度バッファに対応させます。


レンダーパスの設定

レンダーパスは描画処理の大まかな流れを表すオブジェクトでした。今までは画像一枚を出力するだけでしたが、深度バッファが関わる場合は少し設定を変える必要があります。具体的には、深度バッファもアタッチメントの一種という扱いなのでその設定をします。

アタッチメントの追加

深度バッファを表すアタッチメントを追加しましょう。

vk::AttachmentDescription attachments[2];   // 2個に変更
attachments[0].format = swapchainFormat.format;
attachments[0].samples = vk::SampleCountFlagBits::e1;
attachments[0].loadOp = vk::AttachmentLoadOp::eClear;
attachments[0].storeOp = vk::AttachmentStoreOp::eStore;
attachments[0].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
attachments[0].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
attachments[0].initialLayout = vk::ImageLayout::eUndefined;
attachments[0].finalLayout = vk::ImageLayout::ePresentSrcKHR;
// 追加
attachments[1].format = vk::Format::eD32Sfloat;
attachments[1].samples = vk::SampleCountFlagBits::e1;
attachments[1].loadOp = vk::AttachmentLoadOp::eClear;
attachments[1].storeOp = vk::AttachmentStoreOp::eDontCare;
attachments[1].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
attachments[1].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
attachments[1].initialLayout = vk::ImageLayout::eUndefined;
attachments[1].finalLayout = vk::ImageLayout::eDepthStencilAttachmentOptimal;
renderpassCreateInfo.attachmentCount = 2;   // 変更
renderpassCreateInfo.pAttachments = attachments;

0番目のアタッチメントは今まで通りです。

1番目は深度バッファを表すアタッチメントです。

formatはイメージに合わせています。

storeOpeDontCareにしています。深度バッファの最終的な値はどうでもいいためです。

finalLayouteDepthStencilAttachmentOptimalを指定しています。深度バッファとして使うイメージはこのレイアウトになっていると良いとされています。

サブパスの設定

サブパスの設定vk::SubpassDescriptionにはpDepthStencilAttachmentというメンバ変数があり、ここに深度バッファのアタッチメントを指定します。

// 追加
vk::AttachmentReference subpass0_depthAttachmentRef;
subpass0_depthAttachmentRef.attachment = 1;
subpass0_depthAttachmentRef.layout = vk::ImageLayout::eDepthStencilAttachmentOptimal;

vk::SubpassDescription subpasses[1];
subpasses[0].pipelineBindPoint = vk::PipelineBindPoint::eGraphics;
subpasses[0].colorAttachmentCount = 1;
subpasses[0].pColorAttachments = subpass0_attachmentRefs;
// 追加
subpasses[0].pDepthStencilAttachment = &subpass0_depthAttachmentRef;

これでレンダーパスの設定は完了です。

フレームバッファの設定

レンダーパスの各アタッチメントに対応するイメージ(ビュー)を設定するのがフレームバッファでした。アタッチメントが2つに増えたので、それを設定します。

vk::ImageView frameBufAttachments[2];   // 2個に変更
frameBufAttachments[0] = swapchainImageViews[i].get();
frameBufAttachments[1] = depthImageView.get();  // 追加

vk::FramebufferCreateInfo frameBufCreateInfo;
frameBufCreateInfo.width = surfaceCapabilities.currentExtent.width;
frameBufCreateInfo.height = surfaceCapabilities.currentExtent.height;
frameBufCreateInfo.layers = 1;
frameBufCreateInfo.renderPass = renderpass.get();
frameBufCreateInfo.attachmentCount = 2;   // 2個に変更
frameBufCreateInfo.pAttachments = frameBufAttachments;

swapchainFramebufs[i] = device->createFramebufferUnique(frameBufCreateInfo);

これでフレームバッファの設定も完了です。

値のクリア

最後にもう一つ直す部分があります。毎フレームの描画部における値のクリアです。

深度バッファの値は最初は1.0fにクリアされている必要があります。 手前かどうかを判定するためのものなので、初期値は何よりも遠くになっていなければならないためです。

5章14節で解説した通り、クリッピングにより1.0より遠くは描画されないので、1.0より大きい値でクリアする必要はありません。

vk::ClearValue clearVal[2]; // 2個に変更
clearVal[0].color.float32[0] = 0.0f;
clearVal[0].color.float32[1] = 0.0f;
clearVal[0].color.float32[2] = 0.0f;
clearVal[0].color.float32[3] = 1.0f;
// 追加
clearVal[1].depthStencil.depth = 1.0f;

vk::RenderPassBeginInfo renderpassBeginInfo;
renderpassBeginInfo.renderPass = renderpass.get();
renderpassBeginInfo.framebuffer = swapchainFramebufs[imgIndex].get();
renderpassBeginInfo.renderArea = vk::Rect2D({0, 0}, {screenWidth, screenHeight});
renderpassBeginInfo.clearValueCount = 2; // 2個に変更
renderpassBeginInfo.pClearValues = clearVal;

これでレンダーパス周りの深度バッファ対応は終わりです。


この節ではレンダーパスとフレームバッファの設定を行いました。次節ではパイプラインの設定を行います。

この節のコード
#include <vulkan/vulkan.hpp>
#include <GLFW/glfw3.h>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <chrono>

const uint32_t screenWidth = 640;
const uint32_t screenHeight = 480;

struct Vec2 {
    float x, y;
};

struct Vec3 {
    float x, y, z;
};

struct Mat4x4 {
    float v[4][4];
};

Mat4x4 operator*(const Mat4x4 &a, const Mat4x4 &b) {
    Mat4x4 c = {};
    for(int i = 0; i < 4; i++)
        for(int j = 0; j < 4; j++)
            for(int k = 0; k < 4; k++)
                c.v[i][j] += a.v[k][j] * b.v[i][k];
    return c;
}

struct Vertex {
    Vec3 pos;
    Vec3 color;
};

std::vector<Vertex> vertices = {
    Vertex{Vec3{-0.5f, -0.5f, 0.5f}, Vec3{0.0, 0.0, 1.0}},
    Vertex{Vec3{0.5f, 0.5f, 0.5f}, Vec3{0.0, 1.0, 0.0}},
    Vertex{Vec3{0.5f, -0.5f, 0.5f}, Vec3{1.0, 1.0, 1.0}},
    Vertex{Vec3{-0.5f, 0.5f, 0.5f}, Vec3{1.0, 0.0, 0.0}},
    
    Vertex{Vec3{-0.5f, -0.5f, -0.5f}, Vec3{0.0, 0.0, 1.0}},
    Vertex{Vec3{0.5f, 0.5f, -0.5f}, Vec3{0.0, 1.0, 0.0}},
    Vertex{Vec3{0.5f, -0.5f, -0.5f}, Vec3{1.0, 1.0, 1.0}},
    Vertex{Vec3{-0.5f, 0.5f, -0.5f}, Vec3{1.0, 0.0, 0.0}},
};

std::vector<uint16_t> indices = {
    0, 1, 2, 1, 0, 3, 5, 4, 6, 4, 5, 7, 
    4, 3, 0, 3, 4, 7, 1, 6, 2, 6, 1, 5,
    7, 1, 3, 1, 7, 5, 6, 0, 2, 0, 6, 4
};

struct SceneData {
    Mat4x4 mvpMatrix;
};

SceneData sceneData;

Mat4x4 scaleMatrix(float scale) {
    return Mat4x4{{
        {scale, 0, 0, 0},
        {0, scale, 0, 0},
        {0, 0, scale, 0},
        {0, 0, 0, 1},
    }};
}

Mat4x4 rotationMatrix(Vec3 n, float theta) {
    float c = cos(theta);
    float s = sin(theta);
    float nc = 1 - c;

    return Mat4x4{{
        {n.x * n.x * nc + c,       n.x * n.y * nc + n.z * s, n.x * n.z * nc - n.y * s, 0},
        {n.y * n.x * nc - n.z * s, n.y * n.y * nc + c,       n.y * n.z * nc + n.x * s, 0},
        {n.z * n.x * nc + n.y * s, n.z * n.y * nc - n.x * s, n.z * n.z * nc + c,       0},
        {0, 0, 0, 1},
    }};
}

Mat4x4 translationMatrix(Vec3 v) {
    return Mat4x4{{
        {1, 0, 0, 0},
        {0, 1, 0, 0},
        {0, 0, 1, 0},
        {v.x, v.y, v.z, 1},
    }};
}

Mat4x4 viewMatrix(Vec3 cameraPos, Vec3 dir, Vec3 up) {
    const auto cameraShift = 
        Mat4x4{{
            {1, 0, 0, 0},
            {0, 1, 0, 0},
            {0, 0, 1, 0},
            {-cameraPos.x, -cameraPos.y, -cameraPos.z, 1},
        }};
    const auto cameraRotation = 
        Mat4x4{{
            {up.z * dir.y - up.y * dir.z, -up.x, dir.x, 0},
            {up.x * dir.z - up.z * dir.x, -up.y, dir.y, 0},
            {up.y * dir.x - up.x * dir.y, -up.z, dir.z, 0},
            {0, 0, 0, 1},
        }};

    return cameraRotation * cameraShift;
}

Mat4x4 projectionMatrix(float angle_y, float ratio, float near, float far) {
    float ky = tan(angle_y);
    float kx = ky * ratio;

    return Mat4x4{{
        {kx, 0, 0, 0},
        {0, ky, 0, 0},
        {0, 0, far/(far-near), 1},
        {0, 0, -near*far/(far-near), 0}
    }};
}

int main() {
    if (!glfwInit())
        return -1;

    uint32_t requiredExtensionsCount;
    const char **requiredExtensions = glfwGetRequiredInstanceExtensions(&requiredExtensionsCount);

    vk::InstanceCreateInfo createInfo;
    createInfo.enabledExtensionCount = requiredExtensionsCount;
    createInfo.ppEnabledExtensionNames = requiredExtensions;

    vk::UniqueInstance instance;
    instance = vk::createInstanceUnique(createInfo);

    glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
    GLFWwindow *window;
    window = glfwCreateWindow(screenWidth, screenHeight, "GLFW Test Window", NULL, NULL);
    if (!window) {
        const char *err;
        glfwGetError(&err);
        std::cout << err << std::endl;
        glfwTerminate();
        return -1;
    }

    VkSurfaceKHR c_surface;
    auto result = glfwCreateWindowSurface(instance.get(), window, nullptr, &c_surface);
    if (result != VK_SUCCESS) {
        const char *err;
        glfwGetError(&err);
        std::cout << err << std::endl;
        glfwTerminate();
        return -1;
    }
    vk::UniqueSurfaceKHR surface{c_surface, instance.get()};

    std::vector<vk::PhysicalDevice> physicalDevices = instance->enumeratePhysicalDevices();

    vk::PhysicalDevice physicalDevice;
    bool existsSuitablePhysicalDevice = false;
    uint32_t graphicsQueueFamilyIndex;

    for (size_t i = 0; i < physicalDevices.size(); i++) {
        std::vector<vk::QueueFamilyProperties> queueProps = physicalDevices[i].getQueueFamilyProperties();
        bool existsGraphicsQueue = false;

        for (size_t j = 0; j < queueProps.size(); j++) {
            if (queueProps[j].queueFlags & vk::QueueFlagBits::eGraphics && physicalDevices[i].getSurfaceSupportKHR(j, surface.get())) {
                existsGraphicsQueue = true;
                graphicsQueueFamilyIndex = j;
                break;
            }
        }

        std::vector<vk::ExtensionProperties> extProps = physicalDevices[i].enumerateDeviceExtensionProperties();
        bool supportsSwapchainExtension = false;

        for (size_t j = 0; j < extProps.size(); j++) {
            if (std::string_view(extProps[j].extensionName.data()) == VK_KHR_SWAPCHAIN_EXTENSION_NAME) {
                supportsSwapchainExtension = true;
                break;
            }
        }

        if (existsGraphicsQueue && supportsSwapchainExtension) {
            physicalDevice = physicalDevices[i];
            existsSuitablePhysicalDevice = true;
            break;
        }
    }

    if (!existsSuitablePhysicalDevice) {
        std::cerr << "使用可能な物理デバイスがありません。" << std::endl;
        return -1;
    }

    vk::DeviceCreateInfo devCreateInfo;

    auto devRequiredExtensions = {VK_KHR_SWAPCHAIN_EXTENSION_NAME};

    devCreateInfo.enabledExtensionCount = devRequiredExtensions.size();
    devCreateInfo.ppEnabledExtensionNames = devRequiredExtensions.begin();

    vk::DeviceQueueCreateInfo queueCreateInfo[1];
    queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamilyIndex;
    queueCreateInfo[0].queueCount = 1;

    float queuePriorities[1] = {1.0};

    queueCreateInfo[0].pQueuePriorities = queuePriorities;

    devCreateInfo.pQueueCreateInfos = queueCreateInfo;
    devCreateInfo.queueCreateInfoCount = 1;

    vk::UniqueDevice device = physicalDevice.createDeviceUnique(devCreateInfo);

    vk::Queue graphicsQueue = device->getQueue(graphicsQueueFamilyIndex, 0);

    vk::PhysicalDeviceMemoryProperties memProps = physicalDevice.getMemoryProperties();

    vk::BufferCreateInfo vertBufferCreateInfo;
    vertBufferCreateInfo.size = sizeof(Vertex) * vertices.size();
    vertBufferCreateInfo.usage = vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eTransferDst;
    vertBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;

    vk::UniqueBuffer vertexBuf = device->createBufferUnique(vertBufferCreateInfo);

    vk::MemoryRequirements vertexBufMemReq = device->getBufferMemoryRequirements(vertexBuf.get());

    vk::MemoryAllocateInfo vertexBufMemAllocInfo;
    vertexBufMemAllocInfo.allocationSize = vertexBufMemReq.size;

    bool suitableMemoryTypeFound = false;
    for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
        if (vertexBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal)) {
            vertexBufMemAllocInfo.memoryTypeIndex = i;
            suitableMemoryTypeFound = true;
            break;
        }
    }
    if (!suitableMemoryTypeFound) {
        std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
        return -1;
    }

    vk::UniqueDeviceMemory vertexBufMemory = device->allocateMemoryUnique(vertexBufMemAllocInfo);

    device->bindBufferMemory(vertexBuf.get(), vertexBufMemory.get(), 0);

    {
        vk::BufferCreateInfo stagingBufferCreateInfo;
        stagingBufferCreateInfo.size = sizeof(Vertex) * vertices.size();
        stagingBufferCreateInfo.usage = vk::BufferUsageFlagBits::eTransferSrc;
        stagingBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;

        vk::UniqueBuffer stagingBuf = device->createBufferUnique(stagingBufferCreateInfo);

        vk::MemoryRequirements stagingBufMemReq = device->getBufferMemoryRequirements(stagingBuf.get());

        vk::MemoryAllocateInfo stagingBufMemAllocInfo;
        stagingBufMemAllocInfo.allocationSize = stagingBufMemReq.size;

        suitableMemoryTypeFound = false;
        for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
            if (stagingBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
                stagingBufMemAllocInfo.memoryTypeIndex = i;
                suitableMemoryTypeFound = true;
                break;
            }
        }
        if (!suitableMemoryTypeFound) {
            std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
            return -1;
        }

        vk::UniqueDeviceMemory stagingBufMemory = device->allocateMemoryUnique(stagingBufMemAllocInfo);

        device->bindBufferMemory(stagingBuf.get(), stagingBufMemory.get(), 0);

        void *pStagingBufMem = device->mapMemory(stagingBufMemory.get(), 0, sizeof(Vertex) * vertices.size());

        std::memcpy(pStagingBufMem, vertices.data(), sizeof(Vertex) * vertices.size());

        vk::MappedMemoryRange flushMemoryRange;
        flushMemoryRange.memory = stagingBufMemory.get();
        flushMemoryRange.offset = 0;
        flushMemoryRange.size = sizeof(Vertex) * vertices.size();

        device->flushMappedMemoryRanges({flushMemoryRange});

        device->unmapMemory(stagingBufMemory.get());

        vk::CommandPoolCreateInfo tmpCmdPoolCreateInfo;
        tmpCmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
        tmpCmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eTransient;
        vk::UniqueCommandPool tmpCmdPool = device->createCommandPoolUnique(tmpCmdPoolCreateInfo);

        vk::CommandBufferAllocateInfo tmpCmdBufAllocInfo;
        tmpCmdBufAllocInfo.commandPool = tmpCmdPool.get();
        tmpCmdBufAllocInfo.commandBufferCount = 1;
        tmpCmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
        std::vector<vk::UniqueCommandBuffer> tmpCmdBufs = device->allocateCommandBuffersUnique(tmpCmdBufAllocInfo);

        vk::BufferCopy bufCopy;
        bufCopy.srcOffset = 0;
        bufCopy.dstOffset = 0;
        bufCopy.size = sizeof(Vertex) * vertices.size();

        vk::CommandBufferBeginInfo cmdBeginInfo;
        cmdBeginInfo.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit;

        tmpCmdBufs[0]->begin(cmdBeginInfo);
        tmpCmdBufs[0]->copyBuffer(stagingBuf.get(), vertexBuf.get(), {bufCopy});
        tmpCmdBufs[0]->end();

        vk::CommandBuffer submitCmdBuf[1] = {tmpCmdBufs[0].get()};
        vk::SubmitInfo submitInfo;
        submitInfo.commandBufferCount = 1;
        submitInfo.pCommandBuffers = submitCmdBuf;

        graphicsQueue.submit({submitInfo});
        graphicsQueue.waitIdle();
    }

    vk::BufferCreateInfo indexBufferCreateInfo;
    indexBufferCreateInfo.size = sizeof(uint16_t) * indices.size();
    indexBufferCreateInfo.usage = vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eTransferDst;
    indexBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;

    vk::UniqueBuffer indexBuf = device->createBufferUnique(indexBufferCreateInfo);

    vk::MemoryRequirements indexBufMemReq = device->getBufferMemoryRequirements(indexBuf.get());

    vk::MemoryAllocateInfo indexBufMemAllocInfo;
    indexBufMemAllocInfo.allocationSize = indexBufMemReq.size;

    suitableMemoryTypeFound = false;
    for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
        if (indexBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal)) {
            indexBufMemAllocInfo.memoryTypeIndex = i;
            suitableMemoryTypeFound = true;
            break;
        }
    }
    if (!suitableMemoryTypeFound) {
        std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
        return -1;
    }

    vk::UniqueDeviceMemory indexBufMemory = device->allocateMemoryUnique(indexBufMemAllocInfo);

    device->bindBufferMemory(indexBuf.get(), indexBufMemory.get(), 0);

    {
        vk::BufferCreateInfo stagingBufferCreateInfo;
        stagingBufferCreateInfo.size = sizeof(uint16_t) * indices.size();
        stagingBufferCreateInfo.usage = vk::BufferUsageFlagBits::eTransferSrc;
        stagingBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;

        vk::UniqueBuffer stagingBuf = device->createBufferUnique(stagingBufferCreateInfo);

        vk::MemoryRequirements stagingBufMemReq = device->getBufferMemoryRequirements(stagingBuf.get());

        vk::MemoryAllocateInfo stagingBufMemAllocInfo;
        stagingBufMemAllocInfo.allocationSize = stagingBufMemReq.size;

        suitableMemoryTypeFound = false;
        for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
            if (stagingBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
                stagingBufMemAllocInfo.memoryTypeIndex = i;
                suitableMemoryTypeFound = true;
                break;
            }
        }
        if (!suitableMemoryTypeFound) {
            std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
            return -1;
        }

        vk::UniqueDeviceMemory stagingBufMemory = device->allocateMemoryUnique(stagingBufMemAllocInfo);

        device->bindBufferMemory(stagingBuf.get(), stagingBufMemory.get(), 0);

        void *pStagingBufMem = device->mapMemory(stagingBufMemory.get(), 0, sizeof(uint16_t) * indices.size());

        std::memcpy(pStagingBufMem, indices.data(), sizeof(uint16_t) * indices.size());

        vk::MappedMemoryRange flushMemoryRange;
        flushMemoryRange.memory = stagingBufMemory.get();
        flushMemoryRange.offset = 0;
        flushMemoryRange.size = sizeof(uint16_t) * indices.size();

        device->flushMappedMemoryRanges({flushMemoryRange});

        device->unmapMemory(stagingBufMemory.get());

        vk::CommandPoolCreateInfo tmpCmdPoolCreateInfo;
        tmpCmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
        tmpCmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eTransient;
        vk::UniqueCommandPool tmpCmdPool = device->createCommandPoolUnique(tmpCmdPoolCreateInfo);

        vk::CommandBufferAllocateInfo tmpCmdBufAllocInfo;
        tmpCmdBufAllocInfo.commandPool = tmpCmdPool.get();
        tmpCmdBufAllocInfo.commandBufferCount = 1;
        tmpCmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
        std::vector<vk::UniqueCommandBuffer> tmpCmdBufs = device->allocateCommandBuffersUnique(tmpCmdBufAllocInfo);

        vk::BufferCopy bufCopy;
        bufCopy.srcOffset = 0;
        bufCopy.dstOffset = 0;
        bufCopy.size = sizeof(uint16_t) * indices.size();

        vk::CommandBufferBeginInfo cmdBeginInfo;
        cmdBeginInfo.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit;

        tmpCmdBufs[0]->begin(cmdBeginInfo);
        tmpCmdBufs[0]->copyBuffer(stagingBuf.get(), indexBuf.get(), {bufCopy});
        tmpCmdBufs[0]->end();

        vk::CommandBuffer submitCmdBuf[1] = {tmpCmdBufs[0].get()};
        vk::SubmitInfo submitInfo;
        submitInfo.commandBufferCount = 1;
        submitInfo.pCommandBuffers = submitCmdBuf;

        graphicsQueue.submit({submitInfo});
        graphicsQueue.waitIdle();
    }

    std::vector<vk::SurfaceFormatKHR> surfaceFormats = physicalDevice.getSurfaceFormatsKHR(surface.get());
    std::vector<vk::PresentModeKHR> surfacePresentModes = physicalDevice.getSurfacePresentModesKHR(surface.get());

    vk::SurfaceFormatKHR swapchainFormat = surfaceFormats[0];
    vk::PresentModeKHR swapchainPresentMode = surfacePresentModes[0];

    vk::AttachmentDescription attachments[2];
    attachments[0].format = swapchainFormat.format;
    attachments[0].samples = vk::SampleCountFlagBits::e1;
    attachments[0].loadOp = vk::AttachmentLoadOp::eClear;
    attachments[0].storeOp = vk::AttachmentStoreOp::eStore;
    attachments[0].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
    attachments[0].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
    attachments[0].initialLayout = vk::ImageLayout::eUndefined;
    attachments[0].finalLayout = vk::ImageLayout::ePresentSrcKHR;
    attachments[1].format = vk::Format::eD32Sfloat;
    attachments[1].samples = vk::SampleCountFlagBits::e1;
    attachments[1].loadOp = vk::AttachmentLoadOp::eClear;
    attachments[1].storeOp = vk::AttachmentStoreOp::eDontCare;
    attachments[1].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
    attachments[1].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
    attachments[1].initialLayout = vk::ImageLayout::eUndefined;
    attachments[1].finalLayout = vk::ImageLayout::eDepthStencilAttachmentOptimal;

    vk::AttachmentReference subpass0_attachmentRefs[1];
    subpass0_attachmentRefs[0].attachment = 0;
    subpass0_attachmentRefs[0].layout = vk::ImageLayout::eColorAttachmentOptimal;

    vk::AttachmentReference subpass0_depthAttachmentRef;
    subpass0_depthAttachmentRef.attachment = 1;
    subpass0_depthAttachmentRef.layout = vk::ImageLayout::eDepthStencilAttachmentOptimal;

    vk::SubpassDescription subpasses[1];
    subpasses[0].pipelineBindPoint = vk::PipelineBindPoint::eGraphics;
    subpasses[0].colorAttachmentCount = 1;
    subpasses[0].pColorAttachments = subpass0_attachmentRefs;
    subpasses[0].pDepthStencilAttachment = &subpass0_depthAttachmentRef;

    vk::RenderPassCreateInfo renderpassCreateInfo;
    renderpassCreateInfo.attachmentCount = 2;
    renderpassCreateInfo.pAttachments = attachments;
    renderpassCreateInfo.subpassCount = 1;
    renderpassCreateInfo.pSubpasses = subpasses;
    renderpassCreateInfo.dependencyCount = 0;
    renderpassCreateInfo.pDependencies = nullptr;

    vk::UniqueRenderPass renderpass = device->createRenderPassUnique(renderpassCreateInfo);

    vk::Viewport viewports[1];
    viewports[0].x = 0.0;
    viewports[0].y = 0.0;
    viewports[0].minDepth = 0.0;
    viewports[0].maxDepth = 1.0;
    viewports[0].width = screenWidth;
    viewports[0].height = screenHeight;

    vk::Rect2D scissors[1];
    scissors[0].offset = vk::Offset2D{0, 0};
    scissors[0].extent = vk::Extent2D{screenWidth, screenHeight};

    vk::PipelineViewportStateCreateInfo viewportState;
    viewportState.viewportCount = 1;
    viewportState.pViewports = viewports;
    viewportState.scissorCount = 1;
    viewportState.pScissors = scissors;

    vk::VertexInputBindingDescription vertexBindingDescription[1];
    vertexBindingDescription[0].binding = 0;
    vertexBindingDescription[0].stride = sizeof(Vertex);
    vertexBindingDescription[0].inputRate = vk::VertexInputRate::eVertex;

    vk::VertexInputAttributeDescription vertexInputDescription[2];
    vertexInputDescription[0].binding = 0;
    vertexInputDescription[0].location = 0;
    vertexInputDescription[0].format = vk::Format::eR32G32B32Sfloat;
    vertexInputDescription[0].offset = offsetof(Vertex, pos);
    vertexInputDescription[1].binding = 0;
    vertexInputDescription[1].location = 1;
    vertexInputDescription[1].format = vk::Format::eR32G32B32Sfloat;
    vertexInputDescription[1].offset = offsetof(Vertex, color);

    vk::PipelineVertexInputStateCreateInfo vertexInputInfo;
    vertexInputInfo.vertexBindingDescriptionCount = std::size(vertexBindingDescription);
    vertexInputInfo.pVertexBindingDescriptions = vertexBindingDescription;
    vertexInputInfo.vertexAttributeDescriptionCount = std::size(vertexInputDescription);
    vertexInputInfo.pVertexAttributeDescriptions = vertexInputDescription;

    vk::PipelineInputAssemblyStateCreateInfo inputAssembly;
    inputAssembly.topology = vk::PrimitiveTopology::eTriangleList;
    inputAssembly.primitiveRestartEnable = false;

    vk::PipelineRasterizationStateCreateInfo rasterizer;
    rasterizer.depthClampEnable = false;
    rasterizer.rasterizerDiscardEnable = false;
    rasterizer.polygonMode = vk::PolygonMode::eFill;
    rasterizer.lineWidth = 1.0f;
    rasterizer.cullMode = vk::CullModeFlagBits::eBack;
    rasterizer.frontFace = vk::FrontFace::eClockwise;
    rasterizer.depthBiasEnable = false;

    vk::PipelineMultisampleStateCreateInfo multisample;
    multisample.sampleShadingEnable = false;
    multisample.rasterizationSamples = vk::SampleCountFlagBits::e1;

    vk::PipelineColorBlendAttachmentState blendattachment[1];
    blendattachment[0].colorWriteMask = vk::ColorComponentFlagBits::eA | vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG | vk::ColorComponentFlagBits::eB;
    blendattachment[0].blendEnable = false;

    vk::PipelineColorBlendStateCreateInfo blend;
    blend.logicOpEnable = false;
    blend.attachmentCount = 1;
    blend.pAttachments = blendattachment;

    vk::PipelineLayoutCreateInfo layoutCreateInfo;

    vk::PushConstantRange pushConstantRange[1];
    pushConstantRange[0].offset = 0;
    pushConstantRange[0].size = sizeof(SceneData);
    pushConstantRange[0].stageFlags = vk::ShaderStageFlagBits::eVertex;

    layoutCreateInfo.pPushConstantRanges = pushConstantRange;
    layoutCreateInfo.pushConstantRangeCount = 1;

    vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(layoutCreateInfo);

    size_t vertSpvFileSz = std::filesystem::file_size("shader.vert.spv");

    std::ifstream vertSpvFile("shader.vert.spv", std::ios_base::binary);

    std::vector<char> vertSpvFileData(vertSpvFileSz);
    vertSpvFile.read(vertSpvFileData.data(), vertSpvFileSz);

    vk::ShaderModuleCreateInfo vertShaderCreateInfo;
    vertShaderCreateInfo.codeSize = vertSpvFileSz;
    vertShaderCreateInfo.pCode = reinterpret_cast<const uint32_t *>(vertSpvFileData.data());

    vk::UniqueShaderModule vertShader = device->createShaderModuleUnique(vertShaderCreateInfo);

    size_t fragSpvFileSz = std::filesystem::file_size("shader.frag.spv");

    std::ifstream fragSpvFile("shader.frag.spv", std::ios_base::binary);

    std::vector<char> fragSpvFileData(fragSpvFileSz);
    fragSpvFile.read(fragSpvFileData.data(), fragSpvFileSz);

    vk::ShaderModuleCreateInfo fragShaderCreateInfo;
    fragShaderCreateInfo.codeSize = fragSpvFileSz;
    fragShaderCreateInfo.pCode = reinterpret_cast<const uint32_t *>(fragSpvFileData.data());

    vk::UniqueShaderModule fragShader = device->createShaderModuleUnique(fragShaderCreateInfo);

    vk::PipelineShaderStageCreateInfo shaderStage[2];
    shaderStage[0].stage = vk::ShaderStageFlagBits::eVertex;
    shaderStage[0].module = vertShader.get();
    shaderStage[0].pName = "main";
    shaderStage[1].stage = vk::ShaderStageFlagBits::eFragment;
    shaderStage[1].module = fragShader.get();
    shaderStage[1].pName = "main";

    vk::GraphicsPipelineCreateInfo pipelineCreateInfo;
    pipelineCreateInfo.pViewportState = &viewportState;
    pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
    pipelineCreateInfo.pInputAssemblyState = &inputAssembly;
    pipelineCreateInfo.pRasterizationState = &rasterizer;
    pipelineCreateInfo.pMultisampleState = &multisample;
    pipelineCreateInfo.pColorBlendState = &blend;
    pipelineCreateInfo.layout = pipelineLayout.get();
    pipelineCreateInfo.renderPass = renderpass.get();
    pipelineCreateInfo.subpass = 0;
    pipelineCreateInfo.stageCount = 2;
    pipelineCreateInfo.pStages = shaderStage;

    vk::UniquePipeline pipeline = device->createGraphicsPipelineUnique(nullptr, pipelineCreateInfo).value;

    vk::UniqueSwapchainKHR swapchain;
    std::vector<vk::Image> swapchainImages;
    std::vector<vk::UniqueImageView> swapchainImageViews;
    std::vector<vk::UniqueFramebuffer> swapchainFramebufs;

    vk::UniqueImage depthImage;
    vk::UniqueDeviceMemory depthImageMemory;
    vk::UniqueImageView depthImageView;

    auto recreateSwapchain = [&]() {
        swapchainFramebufs.clear();
        swapchainImageViews.clear();
        swapchainImages.clear();
        swapchain.reset();

        vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface.get());

        vk::SwapchainCreateInfoKHR swapchainCreateInfo;
        swapchainCreateInfo.surface = surface.get();
        swapchainCreateInfo.minImageCount = surfaceCapabilities.minImageCount + 1;
        swapchainCreateInfo.imageFormat = swapchainFormat.format;
        swapchainCreateInfo.imageColorSpace = swapchainFormat.colorSpace;
        swapchainCreateInfo.imageExtent = surfaceCapabilities.currentExtent;
        swapchainCreateInfo.imageArrayLayers = 1;
        swapchainCreateInfo.imageUsage = vk::ImageUsageFlagBits::eColorAttachment;
        swapchainCreateInfo.imageSharingMode = vk::SharingMode::eExclusive;
        swapchainCreateInfo.preTransform = surfaceCapabilities.currentTransform;
        swapchainCreateInfo.presentMode = swapchainPresentMode;
        swapchainCreateInfo.clipped = VK_TRUE;

        swapchain = device->createSwapchainKHRUnique(swapchainCreateInfo);

        swapchainImages = device->getSwapchainImagesKHR(swapchain.get());

        swapchainImageViews.resize(swapchainImages.size());

        for (size_t i = 0; i < swapchainImages.size(); i++) {
            vk::ImageViewCreateInfo imgViewCreateInfo;
            imgViewCreateInfo.image = swapchainImages[i];
            imgViewCreateInfo.viewType = vk::ImageViewType::e2D;
            imgViewCreateInfo.format = swapchainFormat.format;
            imgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
            imgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
            imgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
            imgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
            imgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eColor;
            imgViewCreateInfo.subresourceRange.baseMipLevel = 0;
            imgViewCreateInfo.subresourceRange.levelCount = 1;
            imgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
            imgViewCreateInfo.subresourceRange.layerCount = 1;

            swapchainImageViews[i] = device->createImageViewUnique(imgViewCreateInfo);
        }

        const auto depthFormatProps = physicalDevice.getFormatProperties(vk::Format::eD32Sfloat);

        vk::ImageCreateInfo depthImgCreateInfo;
        depthImgCreateInfo.imageType = vk::ImageType::e2D;
        depthImgCreateInfo.extent = vk::Extent3D(surfaceCapabilities.currentExtent.width, surfaceCapabilities.currentExtent.height, 1);
        depthImgCreateInfo.mipLevels = 1;
        depthImgCreateInfo.arrayLayers = 1;
        depthImgCreateInfo.format = vk::Format::eD32Sfloat;
        depthImgCreateInfo.tiling = vk::ImageTiling::eOptimal;
        depthImgCreateInfo.initialLayout = vk::ImageLayout::eUndefined;
        depthImgCreateInfo.usage = vk::ImageUsageFlagBits::eDepthStencilAttachment;
        depthImgCreateInfo.sharingMode = vk::SharingMode::eExclusive;
        depthImgCreateInfo.samples = vk::SampleCountFlagBits::e1;

        depthImage = device->createImageUnique(depthImgCreateInfo);

        vk::MemoryRequirements depthImgMemReq = device->getImageMemoryRequirements(depthImage.get());
        vk::MemoryAllocateInfo depthImgMemAllocInfo;
        depthImgMemAllocInfo.allocationSize = depthImgMemReq.size;
        bool suitableMemoryTypeFound = false;
        for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
            if (depthImgMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal)) {
                depthImgMemAllocInfo.memoryTypeIndex = i;
                suitableMemoryTypeFound = true;
                break;
            }
        }
        if (!suitableMemoryTypeFound) {
            std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
            exit(-1);
        }
        depthImageMemory = device->allocateMemoryUnique(depthImgMemAllocInfo);
        device->bindImageMemory(depthImage.get(), depthImageMemory.get(), 0);

        vk::ImageViewCreateInfo depthImgViewCreateInfo;
        depthImgViewCreateInfo.image = depthImage.get();
        depthImgViewCreateInfo.viewType = vk::ImageViewType::e2D;
        depthImgViewCreateInfo.format = depthImgCreateInfo.format;
        depthImgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
        depthImgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
        depthImgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
        depthImgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
        depthImgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eDepth;
        depthImgViewCreateInfo.subresourceRange.baseMipLevel = 0;
        depthImgViewCreateInfo.subresourceRange.levelCount = 1;
        depthImgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
        depthImgViewCreateInfo.subresourceRange.layerCount = 1;

        depthImageView = device->createImageViewUnique(depthImgViewCreateInfo);

        swapchainFramebufs.resize(swapchainImages.size());

        for (size_t i = 0; i < swapchainImages.size(); i++) {
            vk::ImageView frameBufAttachments[2];
            frameBufAttachments[0] = swapchainImageViews[i].get();
            frameBufAttachments[1] = depthImageView.get();

            vk::FramebufferCreateInfo frameBufCreateInfo;
            frameBufCreateInfo.width = surfaceCapabilities.currentExtent.width;
            frameBufCreateInfo.height = surfaceCapabilities.currentExtent.height;
            frameBufCreateInfo.layers = 1;
            frameBufCreateInfo.renderPass = renderpass.get();
            frameBufCreateInfo.attachmentCount = 2;
            frameBufCreateInfo.pAttachments = frameBufAttachments;

            swapchainFramebufs[i] = device->createFramebufferUnique(frameBufCreateInfo);
        }
    };

    recreateSwapchain();

    vk::CommandPoolCreateInfo cmdPoolCreateInfo;
    cmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
    cmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
    vk::UniqueCommandPool cmdPool = device->createCommandPoolUnique(cmdPoolCreateInfo);

    vk::CommandBufferAllocateInfo cmdBufAllocInfo;
    cmdBufAllocInfo.commandPool = cmdPool.get();
    cmdBufAllocInfo.commandBufferCount = 1;
    cmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
    std::vector<vk::UniqueCommandBuffer> cmdBufs = device->allocateCommandBuffersUnique(cmdBufAllocInfo);

    vk::SemaphoreCreateInfo semaphoreCreateInfo;

    vk::UniqueSemaphore swapchainImgSemaphore, imgRenderedSemaphore;
    swapchainImgSemaphore = device->createSemaphoreUnique(semaphoreCreateInfo);
    imgRenderedSemaphore = device->createSemaphoreUnique(semaphoreCreateInfo);

    vk::FenceCreateInfo fenceCreateInfo;
    fenceCreateInfo.flags = vk::FenceCreateFlagBits::eSignaled;

    vk::UniqueFence imgRenderedFence = device->createFenceUnique(fenceCreateInfo);

    auto old = std::chrono::high_resolution_clock::now();
    while (!glfwWindowShouldClose(window)) {
        glfwPollEvents();

        device->waitForFences({imgRenderedFence.get()}, VK_TRUE, UINT64_MAX);

        vk::ResultValue acquireImgResult = device->acquireNextImageKHR(swapchain.get(), 1'000'000'000, swapchainImgSemaphore.get());
        if (acquireImgResult.result == vk::Result::eSuboptimalKHR || acquireImgResult.result == vk::Result::eErrorOutOfDateKHR) {
            std::cerr << "スワップチェーンを再作成します。" << std::endl;
            recreateSwapchain();
            continue;
        }
        if (acquireImgResult.result != vk::Result::eSuccess) {
            std::cerr << "次フレームの取得に失敗しました。" << std::endl;
            return -1;
        }
        device->resetFences({imgRenderedFence.get()});

        uint32_t imgIndex = acquireImgResult.value;

        cmdBufs[0]->reset();

        vk::CommandBufferBeginInfo cmdBeginInfo;
        cmdBufs[0]->begin(cmdBeginInfo);

        vk::ClearValue clearVal[2];
        clearVal[0].color.float32[0] = 0.0f;
        clearVal[0].color.float32[1] = 0.0f;
        clearVal[0].color.float32[2] = 0.0f;
        clearVal[0].color.float32[3] = 1.0f;
        clearVal[1].depthStencil.depth = 1.0f;

        vk::RenderPassBeginInfo renderpassBeginInfo;
        renderpassBeginInfo.renderPass = renderpass.get();
        renderpassBeginInfo.framebuffer = swapchainFramebufs[imgIndex].get();
        renderpassBeginInfo.renderArea = vk::Rect2D({0, 0}, {screenWidth, screenHeight});
        renderpassBeginInfo.clearValueCount = 2;
        renderpassBeginInfo.pClearValues = clearVal;

        cmdBufs[0]->beginRenderPass(renderpassBeginInfo, vk::SubpassContents::eInline);

        cmdBufs[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.get());
        cmdBufs[0]->bindVertexBuffers(0, {vertexBuf.get()}, {0});
        cmdBufs[0]->bindIndexBuffer(indexBuf.get(), 0, vk::IndexType::eUint16);

        {
            static std::chrono::system_clock::time_point prevTime;
            static float rotation = 0.0f;

            const auto nowTime = std::chrono::system_clock::now();
            const auto delta = std::chrono::duration_cast<std::chrono::microseconds>(nowTime - prevTime).count();
            rotation += delta * 2 * 3.14f / 1000000 * (0.2f);
            rotation = fmod(rotation, 2 * 3.14159f);
            prevTime = nowTime;

            auto model1 = translationMatrix({cos(rotation), sin(rotation), 0.0f}) * rotationMatrix({0.0f, 0.0f, 1.0f}, rotation) * scaleMatrix(1.0f);
            auto model2 = translationMatrix({-cos(rotation), -sin(rotation), 0.0f}) * rotationMatrix({0.0f, 0.0f, 1.0f}, rotation) * scaleMatrix(1.0f);
            auto view = viewMatrix({0.0f, -3.0f, -2.0f}, {0.0f, +0.8f, +0.6f}, {0.0f, +0.6f, -0.8f});
            auto proj = projectionMatrix(3.14f / 3, float(screenHeight) / float(screenWidth), 0.1f, 100.0f);

            sceneData.mvpMatrix = proj * view * model1;
            cmdBufs[0]->pushConstants(pipelineLayout.get(), vk::ShaderStageFlagBits::eVertex, 0, sizeof(SceneData), &sceneData);
            cmdBufs[0]->drawIndexed(indices.size(), 1, 0, 0, 0);

            sceneData.mvpMatrix = proj * view * model2;
            cmdBufs[0]->pushConstants(pipelineLayout.get(), vk::ShaderStageFlagBits::eVertex, 0, sizeof(SceneData), &sceneData);
            cmdBufs[0]->drawIndexed(indices.size(), 1, 0, 0, 0);
        }

        cmdBufs[0]->endRenderPass();

        cmdBufs[0]->end();

        vk::CommandBuffer submitCmdBuf[1] = {cmdBufs[0].get()};
        vk::SubmitInfo submitInfo;
        submitInfo.commandBufferCount = 1;
        submitInfo.pCommandBuffers = submitCmdBuf;

        vk::Semaphore renderwaitSemaphores[] = {swapchainImgSemaphore.get()};
        vk::PipelineStageFlags renderwaitStages[] = {vk::PipelineStageFlagBits::eColorAttachmentOutput};
        submitInfo.waitSemaphoreCount = 1;
        submitInfo.pWaitSemaphores = renderwaitSemaphores;
        submitInfo.pWaitDstStageMask = renderwaitStages;

        vk::Semaphore renderSignalSemaphores[] = {imgRenderedSemaphore.get()};
        submitInfo.signalSemaphoreCount = 1;
        submitInfo.pSignalSemaphores = renderSignalSemaphores;

        graphicsQueue.submit({submitInfo}, imgRenderedFence.get());

        vk::PresentInfoKHR presentInfo;

        auto presentSwapchains = {swapchain.get()};
        auto imgIndices = {imgIndex};

        presentInfo.swapchainCount = presentSwapchains.size();
        presentInfo.pSwapchains = presentSwapchains.begin();
        presentInfo.pImageIndices = imgIndices.begin();

        vk::Semaphore presenWaitSemaphores[] = {imgRenderedSemaphore.get()};
        presentInfo.waitSemaphoreCount = 1;
        presentInfo.pWaitSemaphores = presenWaitSemaphores;

        graphicsQueue.presentKHR(presentInfo);
    }

    graphicsQueue.waitIdle();
    glfwTerminate();
    return 0;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(push_constant) uniform SceneData {
    mat4 mvpMatrix;
} drawInfo;

layout(location = 0) in vec3 inPos;
layout(location = 1) in vec3 inColor;
layout(location = 0) out vec3 fragmentColor;

void main() {
    gl_Position = drawInfo.mvpMatrix * vec4(inPos, 1.0);
    fragmentColor = inColor;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(location = 0) in vec3 fragmentColor;
layout(location = 0) out vec4 outColor;

void main() {
    outColor = vec4(fragmentColor, 1.0);
}
cmake_minimum_required(VERSION 3.22)

project(vulkan-test)

set(CMAKE_CXX_STANDARD 17)

add_executable(app main.cpp)

find_package(Vulkan REQUIRED)
target_include_directories(app PRIVATE ${Vulkan_INCLUDE_DIRS})
target_link_libraries(app PRIVATE ${Vulkan_LIBRARIES})

find_package(glfw3 CONFIG REQUIRED)
target_link_libraries(app PRIVATE glfw)