この節では、パイプラインに深度バッファの設定をします。
この節を終えればついに前後関係の正しい描画ができるようになります。
パイプラインの設定
新しい構造体としてvk::PipelineDepthStencilStateCreateInfo
を用います。
これはレンダリングパイプラインにおいて、深度バッファを有効化するための設定を入れる構造体です。
vk::PipelineDepthStencilStateCreateInfo depthstencil;
depthstencil.depthTestEnable = VK_TRUE;
depthstencil.depthWriteEnable = VK_TRUE;
depthstencil.depthCompareOp = vk::CompareOp::eLess;
depthstencil.depthBoundsTestEnable = VK_FALSE;
depthstencil.stencilTestEnable = VK_FALSE;
depthTestEnable
をVK_TRUE
にすると、深度バッファの値とZ値の比較による描画スキップ(デプステスト)が有効化されます。
depthWriteEnable
をVK_TRUE
にすると、ポリゴンを描画した際にそのZ値が深度バッファに書き込まれます。
両方を有効にすることによって前後関係を正しく描画できるようになります。
depthCompareOp
は、デプステストの際の比較方法を指定します。 ここではeLess
を指定していますが、例えばeGreater
などを指定すると逆の判定になります。
depthBoundsTestEnable
とstencilTestEnable
については詳細な説明を省略します。興味がある場合は調べてみましょう。
この構造体を作ったら、vk::GraphicsPipelineCreateInfo
のpDepthStencilState
にそのポインタを指定します。
vk::GraphicsPipelineCreateInfo pipelineCreateInfo;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssembly;
pipelineCreateInfo.pRasterizationState = &rasterizer;
pipelineCreateInfo.pMultisampleState = &multisample;
pipelineCreateInfo.pColorBlendState = &blend;
pipelineCreateInfo.pDepthStencilState = &depthstencil; // 追加
pipelineCreateInfo.layout = pipelineLayout.get();
pipelineCreateInfo.renderPass = renderpass.get();
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = shaderStage;
表示
これで実行してみましょう。
無事、常に前後関係が正しく描画されるようになりました。 これで3Dモデルなどを描画するための基礎準備は全て完了です。
この章では深度バッファを利用して前後関係を正しく描画する方法について学びました。次章ではいよいよ3Dモデルデータを読み込んで描画します。この節のコード
#include <vulkan/vulkan.hpp>
#include <GLFW/glfw3.h>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <chrono>
const uint32_t screenWidth = 640;
const uint32_t screenHeight = 480;
struct Vec2 {
float x, y;
};
struct Vec3 {
float x, y, z;
};
struct Mat4x4 {
float v[4][4];
};
Mat4x4 operator*(const Mat4x4 &a, const Mat4x4 &b) {
Mat4x4 c = {};
for(int i = 0; i < 4; i++)
for(int j = 0; j < 4; j++)
for(int k = 0; k < 4; k++)
c.v[i][j] += a.v[k][j] * b.v[i][k];
return c;
}
struct Vertex {
Vec3 pos;
Vec3 color;
};
std::vector<Vertex> vertices = {
Vertex{Vec3{-0.5f, -0.5f, 0.5f}, Vec3{0.0, 0.0, 1.0}},
Vertex{Vec3{0.5f, 0.5f, 0.5f}, Vec3{0.0, 1.0, 0.0}},
Vertex{Vec3{0.5f, -0.5f, 0.5f}, Vec3{1.0, 1.0, 1.0}},
Vertex{Vec3{-0.5f, 0.5f, 0.5f}, Vec3{1.0, 0.0, 0.0}},
Vertex{Vec3{-0.5f, -0.5f, -0.5f}, Vec3{0.0, 0.0, 1.0}},
Vertex{Vec3{0.5f, 0.5f, -0.5f}, Vec3{0.0, 1.0, 0.0}},
Vertex{Vec3{0.5f, -0.5f, -0.5f}, Vec3{1.0, 1.0, 1.0}},
Vertex{Vec3{-0.5f, 0.5f, -0.5f}, Vec3{1.0, 0.0, 0.0}},
};
std::vector<uint16_t> indices = {
0, 1, 2, 1, 0, 3, 5, 4, 6, 4, 5, 7,
4, 3, 0, 3, 4, 7, 1, 6, 2, 6, 1, 5,
7, 1, 3, 1, 7, 5, 6, 0, 2, 0, 6, 4
};
struct SceneData {
Mat4x4 mvpMatrix;
};
SceneData sceneData;
Mat4x4 scaleMatrix(float scale) {
return Mat4x4{{
{scale, 0, 0, 0},
{0, scale, 0, 0},
{0, 0, scale, 0},
{0, 0, 0, 1},
}};
}
Mat4x4 rotationMatrix(Vec3 n, float theta) {
float c = cos(theta);
float s = sin(theta);
float nc = 1 - c;
return Mat4x4{{
{n.x * n.x * nc + c, n.x * n.y * nc + n.z * s, n.x * n.z * nc - n.y * s, 0},
{n.y * n.x * nc - n.z * s, n.y * n.y * nc + c, n.y * n.z * nc + n.x * s, 0},
{n.z * n.x * nc + n.y * s, n.z * n.y * nc - n.x * s, n.z * n.z * nc + c, 0},
{0, 0, 0, 1},
}};
}
Mat4x4 translationMatrix(Vec3 v) {
return Mat4x4{{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{v.x, v.y, v.z, 1},
}};
}
Mat4x4 viewMatrix(Vec3 cameraPos, Vec3 dir, Vec3 up) {
const auto cameraShift =
Mat4x4{{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{-cameraPos.x, -cameraPos.y, -cameraPos.z, 1},
}};
const auto cameraRotation =
Mat4x4{{
{up.z * dir.y - up.y * dir.z, -up.x, dir.x, 0},
{up.x * dir.z - up.z * dir.x, -up.y, dir.y, 0},
{up.y * dir.x - up.x * dir.y, -up.z, dir.z, 0},
{0, 0, 0, 1},
}};
return cameraRotation * cameraShift;
}
Mat4x4 projectionMatrix(float angle_y, float ratio, float near, float far) {
float ky = tan(angle_y);
float kx = ky * ratio;
return Mat4x4{{
{kx, 0, 0, 0},
{0, ky, 0, 0},
{0, 0, far/(far-near), 1},
{0, 0, -near*far/(far-near), 0}
}};
}
int main() {
if (!glfwInit())
return -1;
uint32_t requiredExtensionsCount;
const char **requiredExtensions = glfwGetRequiredInstanceExtensions(&requiredExtensionsCount);
vk::InstanceCreateInfo createInfo;
createInfo.enabledExtensionCount = requiredExtensionsCount;
createInfo.ppEnabledExtensionNames = requiredExtensions;
vk::UniqueInstance instance;
instance = vk::createInstanceUnique(createInfo);
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
GLFWwindow *window;
window = glfwCreateWindow(screenWidth, screenHeight, "GLFW Test Window", NULL, NULL);
if (!window) {
const char *err;
glfwGetError(&err);
std::cout << err << std::endl;
glfwTerminate();
return -1;
}
VkSurfaceKHR c_surface;
auto result = glfwCreateWindowSurface(instance.get(), window, nullptr, &c_surface);
if (result != VK_SUCCESS) {
const char *err;
glfwGetError(&err);
std::cout << err << std::endl;
glfwTerminate();
return -1;
}
vk::UniqueSurfaceKHR surface{c_surface, instance.get()};
std::vector<vk::PhysicalDevice> physicalDevices = instance->enumeratePhysicalDevices();
vk::PhysicalDevice physicalDevice;
bool existsSuitablePhysicalDevice = false;
uint32_t graphicsQueueFamilyIndex;
for (size_t i = 0; i < physicalDevices.size(); i++) {
std::vector<vk::QueueFamilyProperties> queueProps = physicalDevices[i].getQueueFamilyProperties();
bool existsGraphicsQueue = false;
for (size_t j = 0; j < queueProps.size(); j++) {
if (queueProps[j].queueFlags & vk::QueueFlagBits::eGraphics && physicalDevices[i].getSurfaceSupportKHR(j, surface.get())) {
existsGraphicsQueue = true;
graphicsQueueFamilyIndex = j;
break;
}
}
std::vector<vk::ExtensionProperties> extProps = physicalDevices[i].enumerateDeviceExtensionProperties();
bool supportsSwapchainExtension = false;
for (size_t j = 0; j < extProps.size(); j++) {
if (std::string_view(extProps[j].extensionName.data()) == VK_KHR_SWAPCHAIN_EXTENSION_NAME) {
supportsSwapchainExtension = true;
break;
}
}
if (existsGraphicsQueue && supportsSwapchainExtension) {
physicalDevice = physicalDevices[i];
existsSuitablePhysicalDevice = true;
break;
}
}
if (!existsSuitablePhysicalDevice) {
std::cerr << "使用可能な物理デバイスがありません。" << std::endl;
return -1;
}
vk::DeviceCreateInfo devCreateInfo;
auto devRequiredExtensions = {VK_KHR_SWAPCHAIN_EXTENSION_NAME};
devCreateInfo.enabledExtensionCount = devRequiredExtensions.size();
devCreateInfo.ppEnabledExtensionNames = devRequiredExtensions.begin();
vk::DeviceQueueCreateInfo queueCreateInfo[1];
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamilyIndex;
queueCreateInfo[0].queueCount = 1;
float queuePriorities[1] = {1.0};
queueCreateInfo[0].pQueuePriorities = queuePriorities;
devCreateInfo.pQueueCreateInfos = queueCreateInfo;
devCreateInfo.queueCreateInfoCount = 1;
vk::UniqueDevice device = physicalDevice.createDeviceUnique(devCreateInfo);
vk::Queue graphicsQueue = device->getQueue(graphicsQueueFamilyIndex, 0);
vk::PhysicalDeviceMemoryProperties memProps = physicalDevice.getMemoryProperties();
vk::BufferCreateInfo vertBufferCreateInfo;
vertBufferCreateInfo.size = sizeof(Vertex) * vertices.size();
vertBufferCreateInfo.usage = vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eTransferDst;
vertBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer vertexBuf = device->createBufferUnique(vertBufferCreateInfo);
vk::MemoryRequirements vertexBufMemReq = device->getBufferMemoryRequirements(vertexBuf.get());
vk::MemoryAllocateInfo vertexBufMemAllocInfo;
vertexBufMemAllocInfo.allocationSize = vertexBufMemReq.size;
bool suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (vertexBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal)) {
vertexBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory vertexBufMemory = device->allocateMemoryUnique(vertexBufMemAllocInfo);
device->bindBufferMemory(vertexBuf.get(), vertexBufMemory.get(), 0);
{
vk::BufferCreateInfo stagingBufferCreateInfo;
stagingBufferCreateInfo.size = sizeof(Vertex) * vertices.size();
stagingBufferCreateInfo.usage = vk::BufferUsageFlagBits::eTransferSrc;
stagingBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer stagingBuf = device->createBufferUnique(stagingBufferCreateInfo);
vk::MemoryRequirements stagingBufMemReq = device->getBufferMemoryRequirements(stagingBuf.get());
vk::MemoryAllocateInfo stagingBufMemAllocInfo;
stagingBufMemAllocInfo.allocationSize = stagingBufMemReq.size;
suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (stagingBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
stagingBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory stagingBufMemory = device->allocateMemoryUnique(stagingBufMemAllocInfo);
device->bindBufferMemory(stagingBuf.get(), stagingBufMemory.get(), 0);
void *pStagingBufMem = device->mapMemory(stagingBufMemory.get(), 0, sizeof(Vertex) * vertices.size());
std::memcpy(pStagingBufMem, vertices.data(), sizeof(Vertex) * vertices.size());
vk::MappedMemoryRange flushMemoryRange;
flushMemoryRange.memory = stagingBufMemory.get();
flushMemoryRange.offset = 0;
flushMemoryRange.size = sizeof(Vertex) * vertices.size();
device->flushMappedMemoryRanges({flushMemoryRange});
device->unmapMemory(stagingBufMemory.get());
vk::CommandPoolCreateInfo tmpCmdPoolCreateInfo;
tmpCmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
tmpCmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eTransient;
vk::UniqueCommandPool tmpCmdPool = device->createCommandPoolUnique(tmpCmdPoolCreateInfo);
vk::CommandBufferAllocateInfo tmpCmdBufAllocInfo;
tmpCmdBufAllocInfo.commandPool = tmpCmdPool.get();
tmpCmdBufAllocInfo.commandBufferCount = 1;
tmpCmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> tmpCmdBufs = device->allocateCommandBuffersUnique(tmpCmdBufAllocInfo);
vk::BufferCopy bufCopy;
bufCopy.srcOffset = 0;
bufCopy.dstOffset = 0;
bufCopy.size = sizeof(Vertex) * vertices.size();
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBeginInfo.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit;
tmpCmdBufs[0]->begin(cmdBeginInfo);
tmpCmdBufs[0]->copyBuffer(stagingBuf.get(), vertexBuf.get(), {bufCopy});
tmpCmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = {tmpCmdBufs[0].get()};
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
graphicsQueue.submit({submitInfo});
graphicsQueue.waitIdle();
}
vk::BufferCreateInfo indexBufferCreateInfo;
indexBufferCreateInfo.size = sizeof(uint16_t) * indices.size();
indexBufferCreateInfo.usage = vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eTransferDst;
indexBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer indexBuf = device->createBufferUnique(indexBufferCreateInfo);
vk::MemoryRequirements indexBufMemReq = device->getBufferMemoryRequirements(indexBuf.get());
vk::MemoryAllocateInfo indexBufMemAllocInfo;
indexBufMemAllocInfo.allocationSize = indexBufMemReq.size;
suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (indexBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal)) {
indexBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory indexBufMemory = device->allocateMemoryUnique(indexBufMemAllocInfo);
device->bindBufferMemory(indexBuf.get(), indexBufMemory.get(), 0);
{
vk::BufferCreateInfo stagingBufferCreateInfo;
stagingBufferCreateInfo.size = sizeof(uint16_t) * indices.size();
stagingBufferCreateInfo.usage = vk::BufferUsageFlagBits::eTransferSrc;
stagingBufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
vk::UniqueBuffer stagingBuf = device->createBufferUnique(stagingBufferCreateInfo);
vk::MemoryRequirements stagingBufMemReq = device->getBufferMemoryRequirements(stagingBuf.get());
vk::MemoryAllocateInfo stagingBufMemAllocInfo;
stagingBufMemAllocInfo.allocationSize = stagingBufMemReq.size;
suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (stagingBufMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
stagingBufMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
return -1;
}
vk::UniqueDeviceMemory stagingBufMemory = device->allocateMemoryUnique(stagingBufMemAllocInfo);
device->bindBufferMemory(stagingBuf.get(), stagingBufMemory.get(), 0);
void *pStagingBufMem = device->mapMemory(stagingBufMemory.get(), 0, sizeof(uint16_t) * indices.size());
std::memcpy(pStagingBufMem, indices.data(), sizeof(uint16_t) * indices.size());
vk::MappedMemoryRange flushMemoryRange;
flushMemoryRange.memory = stagingBufMemory.get();
flushMemoryRange.offset = 0;
flushMemoryRange.size = sizeof(uint16_t) * indices.size();
device->flushMappedMemoryRanges({flushMemoryRange});
device->unmapMemory(stagingBufMemory.get());
vk::CommandPoolCreateInfo tmpCmdPoolCreateInfo;
tmpCmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
tmpCmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eTransient;
vk::UniqueCommandPool tmpCmdPool = device->createCommandPoolUnique(tmpCmdPoolCreateInfo);
vk::CommandBufferAllocateInfo tmpCmdBufAllocInfo;
tmpCmdBufAllocInfo.commandPool = tmpCmdPool.get();
tmpCmdBufAllocInfo.commandBufferCount = 1;
tmpCmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> tmpCmdBufs = device->allocateCommandBuffersUnique(tmpCmdBufAllocInfo);
vk::BufferCopy bufCopy;
bufCopy.srcOffset = 0;
bufCopy.dstOffset = 0;
bufCopy.size = sizeof(uint16_t) * indices.size();
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBeginInfo.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit;
tmpCmdBufs[0]->begin(cmdBeginInfo);
tmpCmdBufs[0]->copyBuffer(stagingBuf.get(), indexBuf.get(), {bufCopy});
tmpCmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = {tmpCmdBufs[0].get()};
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
graphicsQueue.submit({submitInfo});
graphicsQueue.waitIdle();
}
std::vector<vk::SurfaceFormatKHR> surfaceFormats = physicalDevice.getSurfaceFormatsKHR(surface.get());
std::vector<vk::PresentModeKHR> surfacePresentModes = physicalDevice.getSurfacePresentModesKHR(surface.get());
vk::SurfaceFormatKHR swapchainFormat = surfaceFormats[0];
vk::PresentModeKHR swapchainPresentMode = surfacePresentModes[0];
vk::AttachmentDescription attachments[2];
attachments[0].format = swapchainFormat.format;
attachments[0].samples = vk::SampleCountFlagBits::e1;
attachments[0].loadOp = vk::AttachmentLoadOp::eClear;
attachments[0].storeOp = vk::AttachmentStoreOp::eStore;
attachments[0].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
attachments[0].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
attachments[0].initialLayout = vk::ImageLayout::eUndefined;
attachments[0].finalLayout = vk::ImageLayout::ePresentSrcKHR;
attachments[1].format = vk::Format::eD32Sfloat;
attachments[1].samples = vk::SampleCountFlagBits::e1;
attachments[1].loadOp = vk::AttachmentLoadOp::eClear;
attachments[1].storeOp = vk::AttachmentStoreOp::eDontCare;
attachments[1].stencilLoadOp = vk::AttachmentLoadOp::eDontCare;
attachments[1].stencilStoreOp = vk::AttachmentStoreOp::eDontCare;
attachments[1].initialLayout = vk::ImageLayout::eUndefined;
attachments[1].finalLayout = vk::ImageLayout::eDepthStencilAttachmentOptimal;
vk::AttachmentReference subpass0_attachmentRefs[1];
subpass0_attachmentRefs[0].attachment = 0;
subpass0_attachmentRefs[0].layout = vk::ImageLayout::eColorAttachmentOptimal;
vk::AttachmentReference subpass0_depthAttachmentRef;
subpass0_depthAttachmentRef.attachment = 1;
subpass0_depthAttachmentRef.layout = vk::ImageLayout::eDepthStencilAttachmentOptimal;
vk::SubpassDescription subpasses[1];
subpasses[0].pipelineBindPoint = vk::PipelineBindPoint::eGraphics;
subpasses[0].colorAttachmentCount = 1;
subpasses[0].pColorAttachments = subpass0_attachmentRefs;
subpasses[0].pDepthStencilAttachment = &subpass0_depthAttachmentRef;
vk::RenderPassCreateInfo renderpassCreateInfo;
renderpassCreateInfo.attachmentCount = 2;
renderpassCreateInfo.pAttachments = attachments;
renderpassCreateInfo.subpassCount = 1;
renderpassCreateInfo.pSubpasses = subpasses;
renderpassCreateInfo.dependencyCount = 0;
renderpassCreateInfo.pDependencies = nullptr;
vk::UniqueRenderPass renderpass = device->createRenderPassUnique(renderpassCreateInfo);
vk::Viewport viewports[1];
viewports[0].x = 0.0;
viewports[0].y = 0.0;
viewports[0].minDepth = 0.0;
viewports[0].maxDepth = 1.0;
viewports[0].width = screenWidth;
viewports[0].height = screenHeight;
vk::Rect2D scissors[1];
scissors[0].offset = vk::Offset2D{0, 0};
scissors[0].extent = vk::Extent2D{screenWidth, screenHeight};
vk::PipelineViewportStateCreateInfo viewportState;
viewportState.viewportCount = 1;
viewportState.pViewports = viewports;
viewportState.scissorCount = 1;
viewportState.pScissors = scissors;
vk::VertexInputBindingDescription vertexBindingDescription[1];
vertexBindingDescription[0].binding = 0;
vertexBindingDescription[0].stride = sizeof(Vertex);
vertexBindingDescription[0].inputRate = vk::VertexInputRate::eVertex;
vk::VertexInputAttributeDescription vertexInputDescription[2];
vertexInputDescription[0].binding = 0;
vertexInputDescription[0].location = 0;
vertexInputDescription[0].format = vk::Format::eR32G32B32Sfloat;
vertexInputDescription[0].offset = offsetof(Vertex, pos);
vertexInputDescription[1].binding = 0;
vertexInputDescription[1].location = 1;
vertexInputDescription[1].format = vk::Format::eR32G32B32Sfloat;
vertexInputDescription[1].offset = offsetof(Vertex, color);
vk::PipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.vertexBindingDescriptionCount = std::size(vertexBindingDescription);
vertexInputInfo.pVertexBindingDescriptions = vertexBindingDescription;
vertexInputInfo.vertexAttributeDescriptionCount = std::size(vertexInputDescription);
vertexInputInfo.pVertexAttributeDescriptions = vertexInputDescription;
vk::PipelineInputAssemblyStateCreateInfo inputAssembly;
inputAssembly.topology = vk::PrimitiveTopology::eTriangleList;
inputAssembly.primitiveRestartEnable = false;
vk::PipelineRasterizationStateCreateInfo rasterizer;
rasterizer.depthClampEnable = false;
rasterizer.rasterizerDiscardEnable = false;
rasterizer.polygonMode = vk::PolygonMode::eFill;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = vk::CullModeFlagBits::eBack;
rasterizer.frontFace = vk::FrontFace::eClockwise;
rasterizer.depthBiasEnable = false;
vk::PipelineMultisampleStateCreateInfo multisample;
multisample.sampleShadingEnable = false;
multisample.rasterizationSamples = vk::SampleCountFlagBits::e1;
vk::PipelineColorBlendAttachmentState blendattachment[1];
blendattachment[0].colorWriteMask = vk::ColorComponentFlagBits::eA | vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG | vk::ColorComponentFlagBits::eB;
blendattachment[0].blendEnable = false;
vk::PipelineColorBlendStateCreateInfo blend;
blend.logicOpEnable = false;
blend.attachmentCount = 1;
blend.pAttachments = blendattachment;
vk::PipelineLayoutCreateInfo layoutCreateInfo;
vk::PushConstantRange pushConstantRange[1];
pushConstantRange[0].offset = 0;
pushConstantRange[0].size = sizeof(SceneData);
pushConstantRange[0].stageFlags = vk::ShaderStageFlagBits::eVertex;
layoutCreateInfo.pPushConstantRanges = pushConstantRange;
layoutCreateInfo.pushConstantRangeCount = 1;
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(layoutCreateInfo);
size_t vertSpvFileSz = std::filesystem::file_size("shader.vert.spv");
std::ifstream vertSpvFile("shader.vert.spv", std::ios_base::binary);
std::vector<char> vertSpvFileData(vertSpvFileSz);
vertSpvFile.read(vertSpvFileData.data(), vertSpvFileSz);
vk::ShaderModuleCreateInfo vertShaderCreateInfo;
vertShaderCreateInfo.codeSize = vertSpvFileSz;
vertShaderCreateInfo.pCode = reinterpret_cast<const uint32_t *>(vertSpvFileData.data());
vk::UniqueShaderModule vertShader = device->createShaderModuleUnique(vertShaderCreateInfo);
size_t fragSpvFileSz = std::filesystem::file_size("shader.frag.spv");
std::ifstream fragSpvFile("shader.frag.spv", std::ios_base::binary);
std::vector<char> fragSpvFileData(fragSpvFileSz);
fragSpvFile.read(fragSpvFileData.data(), fragSpvFileSz);
vk::ShaderModuleCreateInfo fragShaderCreateInfo;
fragShaderCreateInfo.codeSize = fragSpvFileSz;
fragShaderCreateInfo.pCode = reinterpret_cast<const uint32_t *>(fragSpvFileData.data());
vk::UniqueShaderModule fragShader = device->createShaderModuleUnique(fragShaderCreateInfo);
vk::PipelineShaderStageCreateInfo shaderStage[2];
shaderStage[0].stage = vk::ShaderStageFlagBits::eVertex;
shaderStage[0].module = vertShader.get();
shaderStage[0].pName = "main";
shaderStage[1].stage = vk::ShaderStageFlagBits::eFragment;
shaderStage[1].module = fragShader.get();
shaderStage[1].pName = "main";
vk::PipelineDepthStencilStateCreateInfo depthstencil;
depthstencil.depthTestEnable = VK_TRUE;
depthstencil.depthWriteEnable = VK_TRUE;
depthstencil.depthCompareOp = vk::CompareOp::eLess;
depthstencil.depthBoundsTestEnable = VK_FALSE;
depthstencil.stencilTestEnable = VK_FALSE;
vk::GraphicsPipelineCreateInfo pipelineCreateInfo;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssembly;
pipelineCreateInfo.pRasterizationState = &rasterizer;
pipelineCreateInfo.pMultisampleState = &multisample;
pipelineCreateInfo.pColorBlendState = &blend;
pipelineCreateInfo.pDepthStencilState = &depthstencil;
pipelineCreateInfo.layout = pipelineLayout.get();
pipelineCreateInfo.renderPass = renderpass.get();
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = shaderStage;
vk::UniquePipeline pipeline = device->createGraphicsPipelineUnique(nullptr, pipelineCreateInfo).value;
vk::UniqueSwapchainKHR swapchain;
std::vector<vk::Image> swapchainImages;
std::vector<vk::UniqueImageView> swapchainImageViews;
std::vector<vk::UniqueFramebuffer> swapchainFramebufs;
vk::UniqueImage depthImage;
vk::UniqueDeviceMemory depthImageMemory;
vk::UniqueImageView depthImageView;
auto recreateSwapchain = [&]() {
swapchainFramebufs.clear();
swapchainImageViews.clear();
swapchainImages.clear();
swapchain.reset();
vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface.get());
vk::SwapchainCreateInfoKHR swapchainCreateInfo;
swapchainCreateInfo.surface = surface.get();
swapchainCreateInfo.minImageCount = surfaceCapabilities.minImageCount + 1;
swapchainCreateInfo.imageFormat = swapchainFormat.format;
swapchainCreateInfo.imageColorSpace = swapchainFormat.colorSpace;
swapchainCreateInfo.imageExtent = surfaceCapabilities.currentExtent;
swapchainCreateInfo.imageArrayLayers = 1;
swapchainCreateInfo.imageUsage = vk::ImageUsageFlagBits::eColorAttachment;
swapchainCreateInfo.imageSharingMode = vk::SharingMode::eExclusive;
swapchainCreateInfo.preTransform = surfaceCapabilities.currentTransform;
swapchainCreateInfo.presentMode = swapchainPresentMode;
swapchainCreateInfo.clipped = VK_TRUE;
swapchain = device->createSwapchainKHRUnique(swapchainCreateInfo);
swapchainImages = device->getSwapchainImagesKHR(swapchain.get());
swapchainImageViews.resize(swapchainImages.size());
for (size_t i = 0; i < swapchainImages.size(); i++) {
vk::ImageViewCreateInfo imgViewCreateInfo;
imgViewCreateInfo.image = swapchainImages[i];
imgViewCreateInfo.viewType = vk::ImageViewType::e2D;
imgViewCreateInfo.format = swapchainFormat.format;
imgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
imgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eColor;
imgViewCreateInfo.subresourceRange.baseMipLevel = 0;
imgViewCreateInfo.subresourceRange.levelCount = 1;
imgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
imgViewCreateInfo.subresourceRange.layerCount = 1;
swapchainImageViews[i] = device->createImageViewUnique(imgViewCreateInfo);
}
const auto depthFormatProps = physicalDevice.getFormatProperties(vk::Format::eD32Sfloat);
vk::ImageCreateInfo depthImgCreateInfo;
depthImgCreateInfo.imageType = vk::ImageType::e2D;
depthImgCreateInfo.extent = vk::Extent3D(surfaceCapabilities.currentExtent.width, surfaceCapabilities.currentExtent.height, 1);
depthImgCreateInfo.mipLevels = 1;
depthImgCreateInfo.arrayLayers = 1;
depthImgCreateInfo.format = vk::Format::eD32Sfloat;
depthImgCreateInfo.tiling = vk::ImageTiling::eOptimal;
depthImgCreateInfo.initialLayout = vk::ImageLayout::eUndefined;
depthImgCreateInfo.usage = vk::ImageUsageFlagBits::eDepthStencilAttachment;
depthImgCreateInfo.sharingMode = vk::SharingMode::eExclusive;
depthImgCreateInfo.samples = vk::SampleCountFlagBits::e1;
depthImage = device->createImageUnique(depthImgCreateInfo);
vk::MemoryRequirements depthImgMemReq = device->getImageMemoryRequirements(depthImage.get());
vk::MemoryAllocateInfo depthImgMemAllocInfo;
depthImgMemAllocInfo.allocationSize = depthImgMemReq.size;
bool suitableMemoryTypeFound = false;
for (uint32_t i = 0; i < memProps.memoryTypeCount; i++) {
if (depthImgMemReq.memoryTypeBits & (1 << i) && (memProps.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal)) {
depthImgMemAllocInfo.memoryTypeIndex = i;
suitableMemoryTypeFound = true;
break;
}
}
if (!suitableMemoryTypeFound) {
std::cerr << "適切なメモリタイプが存在しません。" << std::endl;
exit(-1);
}
depthImageMemory = device->allocateMemoryUnique(depthImgMemAllocInfo);
device->bindImageMemory(depthImage.get(), depthImageMemory.get(), 0);
vk::ImageViewCreateInfo depthImgViewCreateInfo;
depthImgViewCreateInfo.image = depthImage.get();
depthImgViewCreateInfo.viewType = vk::ImageViewType::e2D;
depthImgViewCreateInfo.format = depthImgCreateInfo.format;
depthImgViewCreateInfo.components.r = vk::ComponentSwizzle::eIdentity;
depthImgViewCreateInfo.components.g = vk::ComponentSwizzle::eIdentity;
depthImgViewCreateInfo.components.b = vk::ComponentSwizzle::eIdentity;
depthImgViewCreateInfo.components.a = vk::ComponentSwizzle::eIdentity;
depthImgViewCreateInfo.subresourceRange.aspectMask = vk::ImageAspectFlagBits::eDepth;
depthImgViewCreateInfo.subresourceRange.baseMipLevel = 0;
depthImgViewCreateInfo.subresourceRange.levelCount = 1;
depthImgViewCreateInfo.subresourceRange.baseArrayLayer = 0;
depthImgViewCreateInfo.subresourceRange.layerCount = 1;
depthImageView = device->createImageViewUnique(depthImgViewCreateInfo);
swapchainFramebufs.resize(swapchainImages.size());
for (size_t i = 0; i < swapchainImages.size(); i++) {
vk::ImageView frameBufAttachments[2];
frameBufAttachments[0] = swapchainImageViews[i].get();
frameBufAttachments[1] = depthImageView.get();
vk::FramebufferCreateInfo frameBufCreateInfo;
frameBufCreateInfo.width = surfaceCapabilities.currentExtent.width;
frameBufCreateInfo.height = surfaceCapabilities.currentExtent.height;
frameBufCreateInfo.layers = 1;
frameBufCreateInfo.renderPass = renderpass.get();
frameBufCreateInfo.attachmentCount = 2;
frameBufCreateInfo.pAttachments = frameBufAttachments;
swapchainFramebufs[i] = device->createFramebufferUnique(frameBufCreateInfo);
}
};
recreateSwapchain();
vk::CommandPoolCreateInfo cmdPoolCreateInfo;
cmdPoolCreateInfo.queueFamilyIndex = graphicsQueueFamilyIndex;
cmdPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
vk::UniqueCommandPool cmdPool = device->createCommandPoolUnique(cmdPoolCreateInfo);
vk::CommandBufferAllocateInfo cmdBufAllocInfo;
cmdBufAllocInfo.commandPool = cmdPool.get();
cmdBufAllocInfo.commandBufferCount = 1;
cmdBufAllocInfo.level = vk::CommandBufferLevel::ePrimary;
std::vector<vk::UniqueCommandBuffer> cmdBufs = device->allocateCommandBuffersUnique(cmdBufAllocInfo);
vk::SemaphoreCreateInfo semaphoreCreateInfo;
vk::UniqueSemaphore swapchainImgSemaphore, imgRenderedSemaphore;
swapchainImgSemaphore = device->createSemaphoreUnique(semaphoreCreateInfo);
imgRenderedSemaphore = device->createSemaphoreUnique(semaphoreCreateInfo);
vk::FenceCreateInfo fenceCreateInfo;
fenceCreateInfo.flags = vk::FenceCreateFlagBits::eSignaled;
vk::UniqueFence imgRenderedFence = device->createFenceUnique(fenceCreateInfo);
auto old = std::chrono::high_resolution_clock::now();
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
device->waitForFences({imgRenderedFence.get()}, VK_TRUE, UINT64_MAX);
vk::ResultValue acquireImgResult = device->acquireNextImageKHR(swapchain.get(), 1'000'000'000, swapchainImgSemaphore.get());
if (acquireImgResult.result == vk::Result::eSuboptimalKHR || acquireImgResult.result == vk::Result::eErrorOutOfDateKHR) {
std::cerr << "スワップチェーンを再作成します。" << std::endl;
recreateSwapchain();
continue;
}
if (acquireImgResult.result != vk::Result::eSuccess) {
std::cerr << "次フレームの取得に失敗しました。" << std::endl;
return -1;
}
device->resetFences({imgRenderedFence.get()});
uint32_t imgIndex = acquireImgResult.value;
cmdBufs[0]->reset();
vk::CommandBufferBeginInfo cmdBeginInfo;
cmdBufs[0]->begin(cmdBeginInfo);
vk::ClearValue clearVal[2];
clearVal[0].color.float32[0] = 0.0f;
clearVal[0].color.float32[1] = 0.0f;
clearVal[0].color.float32[2] = 0.0f;
clearVal[0].color.float32[3] = 1.0f;
clearVal[1].depthStencil.depth = 1.0f;
vk::RenderPassBeginInfo renderpassBeginInfo;
renderpassBeginInfo.renderPass = renderpass.get();
renderpassBeginInfo.framebuffer = swapchainFramebufs[imgIndex].get();
renderpassBeginInfo.renderArea = vk::Rect2D({0, 0}, {screenWidth, screenHeight});
renderpassBeginInfo.clearValueCount = 2;
renderpassBeginInfo.pClearValues = clearVal;
cmdBufs[0]->beginRenderPass(renderpassBeginInfo, vk::SubpassContents::eInline);
cmdBufs[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.get());
cmdBufs[0]->bindVertexBuffers(0, {vertexBuf.get()}, {0});
cmdBufs[0]->bindIndexBuffer(indexBuf.get(), 0, vk::IndexType::eUint16);
{
static std::chrono::system_clock::time_point prevTime;
static float rotation = 0.0f;
const auto nowTime = std::chrono::system_clock::now();
const auto delta = std::chrono::duration_cast<std::chrono::microseconds>(nowTime - prevTime).count();
rotation += delta * 2 * 3.14f / 1000000 * (0.2f);
rotation = fmod(rotation, 2 * 3.14159f);
prevTime = nowTime;
auto model1 = translationMatrix({cos(rotation), sin(rotation), 0.0f}) * rotationMatrix({0.0f, 0.0f, 1.0f}, rotation) * scaleMatrix(1.0f);
auto model2 = translationMatrix({-cos(rotation), -sin(rotation), 0.0f}) * rotationMatrix({0.0f, 0.0f, 1.0f}, rotation) * scaleMatrix(1.0f);
auto view = viewMatrix({0.0f, -3.0f, -2.0f}, {0.0f, +0.8f, +0.6f}, {0.0f, +0.6f, -0.8f});
auto proj = projectionMatrix(3.14f / 3, float(screenHeight) / float(screenWidth), 0.1f, 100.0f);
sceneData.mvpMatrix = proj * view * model1;
cmdBufs[0]->pushConstants(pipelineLayout.get(), vk::ShaderStageFlagBits::eVertex, 0, sizeof(SceneData), &sceneData);
cmdBufs[0]->drawIndexed(indices.size(), 1, 0, 0, 0);
sceneData.mvpMatrix = proj * view * model2;
cmdBufs[0]->pushConstants(pipelineLayout.get(), vk::ShaderStageFlagBits::eVertex, 0, sizeof(SceneData), &sceneData);
cmdBufs[0]->drawIndexed(indices.size(), 1, 0, 0, 0);
}
cmdBufs[0]->endRenderPass();
cmdBufs[0]->end();
vk::CommandBuffer submitCmdBuf[1] = {cmdBufs[0].get()};
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = submitCmdBuf;
vk::Semaphore renderwaitSemaphores[] = {swapchainImgSemaphore.get()};
vk::PipelineStageFlags renderwaitStages[] = {vk::PipelineStageFlagBits::eColorAttachmentOutput};
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = renderwaitSemaphores;
submitInfo.pWaitDstStageMask = renderwaitStages;
vk::Semaphore renderSignalSemaphores[] = {imgRenderedSemaphore.get()};
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = renderSignalSemaphores;
graphicsQueue.submit({submitInfo}, imgRenderedFence.get());
vk::PresentInfoKHR presentInfo;
auto presentSwapchains = {swapchain.get()};
auto imgIndices = {imgIndex};
presentInfo.swapchainCount = presentSwapchains.size();
presentInfo.pSwapchains = presentSwapchains.begin();
presentInfo.pImageIndices = imgIndices.begin();
vk::Semaphore presenWaitSemaphores[] = {imgRenderedSemaphore.get()};
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = presenWaitSemaphores;
graphicsQueue.presentKHR(presentInfo);
}
graphicsQueue.waitIdle();
glfwTerminate();
return 0;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(push_constant) uniform SceneData {
mat4 mvpMatrix;
} drawInfo;
layout(location = 0) in vec3 inPos;
layout(location = 1) in vec3 inColor;
layout(location = 0) out vec3 fragmentColor;
void main() {
gl_Position = drawInfo.mvpMatrix * vec4(inPos, 1.0);
fragmentColor = inColor;
}
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) in vec3 fragmentColor;
layout(location = 0) out vec4 outColor;
void main() {
outColor = vec4(fragmentColor, 1.0);
}
cmake_minimum_required(VERSION 3.22)
project(vulkan-test)
set(CMAKE_CXX_STANDARD 17)
add_executable(app main.cpp)
find_package(Vulkan REQUIRED)
target_include_directories(app PRIVATE ${Vulkan_INCLUDE_DIRS})
target_link_libraries(app PRIVATE ${Vulkan_LIBRARIES})
find_package(glfw3 CONFIG REQUIRED)
target_link_libraries(app PRIVATE glfw)